OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13755–13772

Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf

Jun Zhao, Marouane Temimi, Hosni Ghedira, and Chuanmin Hu  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13755-13772 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (11458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Remote sensing provides an effective tool for timely oil pollution response. In this paper, the spectral signature in the optical and infrared domains of oil slicks observed in shallow coastal waters of the Arabian Gulf was investigated with MODIS, MERIS, and Landsat data. Images of the Floating Algae Index (FAI) and estimates of sea currents from hydrodynamic models supported the multi-sensor oil tracking technique. Scenes with and without sunglint were studied as the spectral signature of oil slicks in the optical domain depends upon the viewing geometry and the solar angle in addition to the type of oil and its thickness. Depending on the combination of those factors, oil slicks may exhibit dark or bright contrasts with respect to oil-free waters. Three oil spills events were thoroughly analyzed, namely, those detected on May 26 2000 by Landsat 7 ETM + and MODIS/Terra, on October 21 2007 by MERIS and MODIS, and on August 17 2013 by Landsat 8 and MODIS/Aqua. The oil slick with bright contrast observed by Landsat 7 ETM + on May 26 2000 showed lower temperature than oil-free areas. The spectral Rayleigh-corrected reflectance (Rrc) signature of oil-covered areas indicated higher variability due to differences in oil fractions while the Rrc spectra of the oil-free area were persistent. Combined with RGB composites, FAI images showed potentials in differentiating oil slicks from algal blooms. Ocean circulation and wind data were used to track oil slicks and forecast their potential landfall. The developed oil spill maps were in agreement with official records. The synergistic use of satellite observations and hydrodynamic modeling is recommended for establishing an early warning and decision support system for oil pollution response.

© 2014 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(010.1690) Atmospheric and oceanic optics : Color
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 26, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: May 7, 2014
Published: May 30, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Jun Zhao, Marouane Temimi, Hosni Ghedira, and Chuanmin Hu, "Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf," Opt. Express 22, 13755-13772 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Jensen, E. W. Ramsey, J. M. Holmes, J. E. Michel, B. Savitsky, B. A. Davis, “Environmental sensitivity Index (ESI) mapping for oil spills using remote sensing and geographic information system technology,” Int. J. Geogr. Info. Syst. 4(2), 181–201 (1990). [CrossRef]
  2. J. Lu, “Marine oil spill detection, statistics, and mapping with ERS SAR imagery in south-east Asia,” Int. J. Remote Sens. 24(15), 3013–3032 (2003). [CrossRef]
  3. J. Lu, H. Lim, S. C. Liew, M. Bao, L. K. Kwoh, “Ocean oil pollution mapping with ERS synthetic aperture radar imagery,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Hamburg, 1999), pp. 212–214.
  4. H. A. Espedal, O. M. Johannessen, “Detection of oil spills near offshore installations using synthetic aperture radar (SAR),” Int. J. Remote Sens. 21(11), 2141–2144 (2000). [CrossRef]
  5. C. Brekke, A. H. Solberg, “Oil spill detection by satellite remote sensing,” Remote Sens. Environ. 95(1), 1–13 (2005). [CrossRef]
  6. US Coast Guard, Update of Inputs of Petroleum Hydrocarbons into the Oceans due to Marine Transportation Activities, National Research Council (National Academy Press, Washington, D. C, 1990).
  7. P. Pavlakis, A. Sieber, and S. Alexandry, “Monitoring oil-spill pollution in the Mediterranean with ERS SAR,” ESA Earth Observation Quarterly 52 (1996).
  8. European Space Agency, “Oil pollution monitoring. ESA Brochure,” ERS and Its Applications-Marine BR-128, 1 (1998).
  9. MEMAC (Marine Emergency Mutual Aid Center), “Oil Spill Incidents in ROPME Sea Area (1965-2002),” MEMAC, Bahrain (2003).
  10. M. Fingas, C. E. Brown, “Review of oil spill remote sensing,” Spill Sci. Technol. Bull. 4(4), 199–208 (1997). [CrossRef]
  11. M. Fingas and C. E. Brown, Oil spill Remote Sensing: A Review (Gulf Professional Publishing, USA, 2011), Chapter 6.
  12. M. Fingas and C. E. Brown, “Review of oil spill remote sensors,” in Proceedings of the 7th international conference on Remote Sensing for Marine and Coastal Environments, (ERIM International, Miami, Florida, 2002).
  13. I. Leifer, W. J. Lehr, D. Simecke-Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012). [CrossRef]
  14. A. H. S. Solberg, “Remote Sensing of Ocean Oil-Spill Pollution,” Proc. IEEE 100(10), 2931–2945 (2012). [CrossRef]
  15. C. Hu, X. Li, and W. G. Pichel, “Detection of oil slicks using MODIS and SAR imagery,” in Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conversation and Management, J.V. Morales, T.P. Stuart, and S. Sathyendranath, eds. (EU PRESPO and IOCCG, Dartmouth, Canada, 2011).
  16. W. Y. Tseng, L. S. Chiu, “AVHRR observations of Persian Gulf oil spills,” in Proceedings of the International Geoscience and Remote Sensing Symposium (Pasadena, California, 1994), pp. 779–782. [CrossRef]
  17. D. Casciello, T. Lacava, N. Pergola, V. Tramutoli, “Robust satellite techniques for oil spill detection and monitoring using AVHRR thermal infrared bands,” Int. J. Remote Sens. 32(14), 4107–4129 (2011). [CrossRef]
  18. C. S. L. Grimaldi, D. Casciello, I. Coviello, T. Lacava, N. Pergola, V. Tramutoli, “An improved RST approach for timely alert and Near Real Time monitoring of oil spill disasters by using AVHRR data,” Nat. Hazards Earth Syst. Sci. 11(5), 1281–1291 (2011). [CrossRef]
  19. C. M. Bentz, J. O. Barros, “A multi-sensor approach for oil spill and sea surface monitoring, in southeastern Brazil,” Int. Oil Spill Conf. Proc. 2005, 703–706 (2005). [CrossRef]
  20. M. Amado, G. De Carolis, V. De Pasquale, G. Pasquariello, “Detection and tracking oil slicks on sun-glittered visible and near infrared satellite imagery,” Int. J. Remote Sens. 30(24), 6403–6427 (2009). [CrossRef]
  21. F. Alawadi, C. Amos, V. Byfield, P. Petrov, “The application of hyperspectral image techniques on MODIS data for the detection of oil spills in the RSA,” Proc. SPIE 7110, 71100Q (2008), doi:. [CrossRef]
  22. B. Bulgarelli, S. Djavidnia, “On MODIS retrieval of oil spill spectral properties in the marine environment,” IEEE Geosci. Remote Sens. Lett. 9(3), 398–402 (2012). [CrossRef]
  23. C. Hu, F. E. Müller-Karger, C. J. Taylor, D. Myhre, B. Murch, A. L. Odriozola, G. Godoy, “MODIS detects oil spills in lake Maracaibo, Venezuela,” Eos Trans. AGU 84(33), 313–319 (2003). [CrossRef]
  24. C. Hu, X. Li, W. G. Pichel, F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), L01604 (2009), doi:. [CrossRef]
  25. G. De Carolis, M. Adamo, G. Pasquariello, “Thickness estimation of marine oil slicks with near-infrared MERIS and MODIS imagery: The Lebanon oil spill case study,” in Proceedings of the International Geoscience and Remote Sensing Symposium, (Munich, 2012), pp. 3002–3005. [CrossRef]
  26. C. Bentz, F. P. de Miranda, “Application of remote sensing data for oil spill monitoring in the Guanabara Bay, Rio de Janeiro, Brazil,” in Proceedings of the International Geoscience and Remote Sensing Symposium, (Sydney, NSW, 2001), pp. 333–335. [CrossRef]
  27. S. Essa, H. Harahsheh, M. Shiobara, and T. Nishidai, Operational Remote Sensing for Detection and Monitoring of Oil Pollution in the Arabian Gulf: Case Studies from the United Arab Emirates (Elsevier B. V., Amsterdam, the Netherlands, 2005), Chap. 3.
  28. M. S. Massoud, F. Al-Abdali, A. N. Al-Ghadban, “The status of oil pollution in the Arabian Gulf by the end of 1993,” Environ. Int. 24(1-2), 11–22 (1998). [CrossRef]
  29. A. A. Elhakeem, W. Elshorbagy, R. Chebbi, “Oil spill simulation and validation in the Arabian (Persian) Gulf with special reference to the UAE coast,” Water Air Soil Pollut. 184(1-4), 243–254 (2007). [CrossRef]
  30. Y. Liu, R. H. Weisberg, C. Hu, L. Zheng, “Tracking the Deepwater Horizon oil spill: A modeling perspective,” Eos Trans. AGU 92(6), 45–46 (2011). [CrossRef]
  31. Y. Liu, R. H. Weisberg, C. Hu, L. Zheng, “Combing numerical ocean circulation models with satellite observations in a trajectory forecast systems: A rapid response to the Deepwater Horizon oil spill,” Proc. SPIE 8030, 80300K (2011), doi:. [CrossRef]
  32. Y. Liu, R. H. Weisberg, C. Hu, and L. Zheng, “Satellites, model combine to track Deepwater Horizon oil spill,” SPIE Newsroom, (2011).
  33. Y. Liu, R. H. Weisberg, C. Hu, C. Kovach, and R. Riethmüller, Evolution of the Loop Current System during the Deepwater Horizon Oil Spill Event as Observed with Drifters and Satellites, (AGU, 2011).
  34. W. Alpers, V. Wismann, R. Theis, H. Huhnerfuss, N. Bartsch, J. Moreira, and J. Lyden, “The damping of ocean surface waves by monomolecular sea slicks measured by airborne multi-frequency radars during the saxon-fpn experiment,” in Geoscience and Remote Sensing Syposium, 1991. IGARSS ’91. Remote Sensing: Global Monitoring for Earth Management, International, 4, pp. 1987, 1990, 3–6 Jun 1991.
  35. C. Hu, “A novel ocean color index to detect floating algae in the global oceans,” Remote Sens. Environ. 113(10), 2118–2129 (2009). [CrossRef]
  36. P. G. Jacob and A. Al-Muzaini, “Marine plants of the Arabian Gulf: a literature review,” Kuwait Institute for Scientific Research, Safat, Kuwait (KISR Tech Report No. 3426) (1990).
  37. ROPME (Regional Organization for the Protection of the Marine Environment). 1999. Regional report of the state of the marine environment, Regional Organization for the Protection of the Marine Environment, State of Kuwait, March 1999.
  38. A. R. G. Price, C. R. C. Sheppard, C. M. Roberts, “The Persian Gulf: its biological setting,” Mar. Pollut. Bull. 27, 9–15 (1993). [CrossRef]
  39. P. F. Sale, D. A. Feary, J. A. Burt, A. G. Bauman, G. H. Cavalcante, K. G. Drouillard, B. Kjerfve, E. Marquis, C. G. Trick, P. Usseglio, H. Lavieren, “The growing need for sustainable ecological management of marine communities of the Persian Gulf,” Ambio 40(1), 4–17 (2011). [CrossRef] [PubMed]
  40. H. A. Naser, “Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review,” Mar. Pollut. Bull. 72(1), 6–13 (2013). [CrossRef] [PubMed]
  41. K. Baith, R. Lindsay, G. Fu, C. R. McClain, “Data analysis system developed for ocean color satellite sensors,” EOS 82(18), 202 (2001). [CrossRef]
  42. C. Hu, Z. Lee, R. Ma, K. Yu, D. Li, S. Shang, “Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China,” J. Geophys. Res. 115(C4), C04002 (2010). [CrossRef]
  43. C. Jackson, “Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Geophys. Res. 112(C11), C11012 (2007), doi:. [CrossRef]
  44. J. W. Salisbury, D. M. D’Aria, F. F. SabinsJr., “Thermal infrared remote sensing of crude oil slicks,” Remote Sens. Environ. 45(2), 225–231 (1993). [CrossRef]
  45. R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates,” Ocean Model. 4(1), 55–88 (2002). [CrossRef]
  46. E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, O. M. Smedstad, J. A. Cummings, A. J. Wallcraft, C. Lozano, H. L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisburg, A. Barth, R. He, F. Werner, J. Wilkin, “U.S. GODAE: Global Ocean Prediction With the Hybrid Coordinate Ocean Model (HYCOM),” Oceanogr. 22(2), 48–59 (2009).
  47. F. Carnesecchi, V. Byfield, P. Cipollini, G. Corsini, M. Diani, “An optical model for the interpretation of remotely sensed multispectral images of oil spill,” Proc. SPIE 7105, 710504 (2008), doi:. [CrossRef]
  48. Z. Otremba, J. Piskozub, “Modelling of the optical contrast of an oil film on a sea surface,” Opt. Express 9(8), 411–416 (2001). [CrossRef] [PubMed]
  49. Z. Otremba, J. Piskozub, “Modeling the remotely sensed optical contrast caused by oil suspended in the sea water column,” Opt. Express 11(1), 2–6 (2003). [CrossRef] [PubMed]
  50. W. Hamza, M. R. Enan, H. Al-Hassini, J.-B. Stuut, D. de-Beer, “Dust storms over the Arabian Gulf: a possible indicators of climate changes consequences,” Aquat. Ecosyst. Health Manage. 14(3), 260–268 (2011). [CrossRef]
  51. N. P. Nezlin, I. G. Polikarpov, F. Y. Al-Yamani, D. V. Subba Rao, A. M. Ignatov, “Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf,” J. Mar. Syst. 82(1-2), 47–60 (2010). [CrossRef]
  52. Z. Lee, C. Hu, R. Arnone, Z. Liu, “Impact of sub-pixel variations on ocean color remote sensing products,” Opt. Express 20(19), 20844–20854 (2012). [CrossRef] [PubMed]
  53. J. Zhao, C. Hu, B. Lapointe, N. Melo, E. M. Johns, R. H. Smith, “Satellite-observed black water events off Southwest Florida: Implications for coral reef health in the Florida Keys National Marine Sanctuary,” Remote Sens. 5(1), 415–431 (2013). [CrossRef]
  54. J. Zhao, H. Ghedira, “Monitoring red tide with satellite imagery and numerical models: A case study in the Arabian Gulf,” Mar. Pollut. Bull. 79(1-2), 305–313 (2014). [CrossRef] [PubMed]
  55. J. Gower, S. King, G. Borstad, L. Brown, “Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer,” Int. J. Remote Sens. 26(9), 2005–2012 (2005). [CrossRef]
  56. R. P. Stumpf, M. E. Culver, P. A. Tester, M. Tomlinson, G. J. Kirkpatrick, B. A. Pederson, E. Truby, V. Ransibrahmanakul, M. Soracco, “Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data,” Harmful Algae 35, 1–14 (2003).
  57. A. H. S. Solberg, G. Storvik, R. Solberg, E. Volden, “Automatic detection of oil spills in ERS SAR images,” IEEE Trans. Geosci. Rem. Sens. 37(4), 1916–1924 (1999). [CrossRef]
  58. M. Marghany, “Genetic algorithm for oil spill automatic detection from Envisat satellite data. Computational Science and Its applications-ICCSA,” Lect. Notes Comput. Sci. 7972, 587–598 (2013). [CrossRef]
  59. M. Marghany, M. Hashim, “Comparative algorithms for automatic detection of oil spill in multisar of RADARSAT-1 SAR and ENVISAT data,” in Proceedings of IEEE Conference on Signal and Image Processing Applications (Kuala Lumpur, 2011), pp. 559–562. [CrossRef]
  60. C. Goyens, C. Jamet, T. Schroeder, “Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters,” Remote Sens. Environ. 131, 63–75 (2013). [CrossRef]
  61. M. Wang, W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007). [CrossRef] [PubMed]
  62. M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009). [CrossRef]
  63. K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited