OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13773–13783

Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems

Cheng Jiang, Yuanshun Cui, and Ka-Di Zhu  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13773-13783 (2014)
http://dx.doi.org/10.1364/OE.22.013773


View Full Text Article

Enhanced HTML    Acrobat PDF (1114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanomechanical resonators provide an unparalleled mass sensitivity sufficient to detect single biomolecules, viruses and nanoparticles. In this work we propose a scheme for mass sensing based on the hybrid opto-electromechanical system, where a mechanical resonator is coupled to an optical cavity and a microwave cavity simultaneously. When the two cavities are driven by two pump fields with proper frequencies and powers, a weak probe field is used to scan across the optical cavity resonance frequency. The mass of a single baculovirus landing onto the surface of the mechanical resonator can be measured by tracking the resonance frequency shift in the probe transmission spectrum before and after the deposition. We also propose a nonlinear mass sensor based on the measurement of the four-wave mixing (FWM) spectrum, which can be used to weigh a single 20-nm-diameter gold nanoparticle with sub-femtogram resolution.

© 2014 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.4910) Optical devices : Oscillators
(300.6370) Spectroscopy : Spectroscopy, microwave
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Sensors

History
Original Manuscript: March 3, 2014
Revised Manuscript: April 27, 2014
Manuscript Accepted: May 17, 2014
Published: May 30, 2014

Citation
Cheng Jiang, Yuanshun Cui, and Ka-Di Zhu, "Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems," Opt. Express 22, 13773-13783 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005). [CrossRef]
  2. J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011). [CrossRef]
  3. K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004). [CrossRef]
  4. N. V. Lavrik, P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003). [CrossRef]
  5. B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004). [CrossRef]
  6. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006). [CrossRef] [PubMed]
  7. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012). [CrossRef]
  8. A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004). [CrossRef]
  9. M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007). [CrossRef]
  10. X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007). [CrossRef]
  11. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009). [CrossRef]
  12. E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010). [CrossRef]
  13. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007). [CrossRef]
  14. S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014). [CrossRef]
  15. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008). [CrossRef] [PubMed]
  16. K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008). [CrossRef]
  17. F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors 13, 146–147 (2013). [CrossRef]
  18. F. Liu, S. Alaie, Z. C. Leseman, M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013). [CrossRef] [PubMed]
  19. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013). [CrossRef] [PubMed]
  20. J.-J. Li, K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012). [CrossRef]
  21. J.-J. Li, K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013). [CrossRef]
  22. T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]
  23. F. Marquardt, S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]
  24. M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012). [CrossRef]
  25. S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009). [CrossRef]
  26. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]
  27. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011). [CrossRef]
  28. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011). [CrossRef]
  29. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006). [CrossRef] [PubMed]
  30. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009). [CrossRef]
  31. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011). [CrossRef]
  32. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011). [CrossRef]
  33. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012). [CrossRef]
  34. T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013). [CrossRef]
  35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]
  36. C. A. Regal, K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011). [CrossRef]
  37. X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013). [CrossRef] [PubMed]
  38. K. N. Qu, G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013). [CrossRef]
  39. J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008). [CrossRef]
  40. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]
  41. H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012). [CrossRef]
  42. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  43. C. W. Gardiner, P. Zoller, Quantum Noise (Springer) (2004).
  44. T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  45. S. Huang, G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010). [CrossRef]
  46. B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004). [CrossRef]
  47. X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012). [CrossRef] [PubMed]
  48. J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).
  49. J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012). [CrossRef] [PubMed]
  50. A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009). [CrossRef]
  51. Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011). [CrossRef]
  52. A. N. Cleland, M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited