OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13811–13824

A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis

Yen-Heng Lin, Kai-Siang Ho, Chin-Tien Yang, Jung-Hao Wang, and Chao-Sung Lai  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13811-13824 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.

© 2014 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:

Original Manuscript: March 11, 2014
Revised Manuscript: May 15, 2014
Manuscript Accepted: May 23, 2014
Published: May 30, 2014

Yen-Heng Lin, Kai-Siang Ho, Chin-Tien Yang, Jung-Hao Wang, and Chao-Sung Lai, "A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis," Opt. Express 22, 13811-13824 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol. 3(1), 1–9 (2009). [CrossRef] [PubMed]
  2. D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, S. K. Lee, “Multiple ZnO nanowires field-effect transistors,” J. Phys. Chem. C 112(4), 1276–1281 (2008). [CrossRef]
  3. J. C. Shin, P. K. Mohseni, K. J. Yu, S. Tomasulo, K. H. Montgomery, M. L. Lee, J. A. Rogers, X. Li, “Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement,” ACS Nano 6(12), 11074–11079 (2012). [PubMed]
  4. Y. Hu, R. R. Lapierre, M. Li, K. Chen, J. J. He, “Optical characteristics of GaAs nanowire solar cells,” J. Appl. Phys. 112(10), 104311 (2012). [CrossRef]
  5. M. Han, S. Liu, L. Zhang, C. Zhang, W. Tu, Z. Dai, J. Bao, “Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction,” ACS Appl. Mater. Interfaces 4(12), 6654–6660 (2012). [CrossRef] [PubMed]
  6. T. Lim, S. J. Ahn, M. Suh, O. K. Kwon, M. Meyyappan, S. Ju, “A nanowire-based shift register for display scan drivers,” Nanotechnology 22(40), 405203 (2011). [CrossRef] [PubMed]
  7. F. Patolsky, G. Zheng, C. M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78(13), 4260–4269 (2006). [CrossRef] [PubMed]
  8. Y. Zhang, L. Su, D. Manuzzi, H. V. de los Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, “Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires,” Biosens. Bioelectron. 31(1), 426–432 (2012). [CrossRef] [PubMed]
  9. S. Hui, J. Zhang, X. Chen, H. Xu, D. Ma, Y. Liu, B. Tao, “Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode,” Sensor Actuat. B-Chem. 155(2), 592–597 (2011). [CrossRef]
  10. F. Patolsky, G. Zheng, C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protoc. 1(4), 1711–1724 (2006). [CrossRef] [PubMed]
  11. K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today 6(2), 131–154 (2011). [CrossRef]
  12. S. Choi, I. Park, Z. Hao, H. Y. N. Holman, A. P. Pisano, “Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors,” Appl. Phys., A Mater. Sci. Process. 107(2), 421–428 (2012). [CrossRef]
  13. A. Agarwal, K. Buddharaju, I. K. Lao, N. Singh, N. Balasubramanian, D. L. Kwong, “Silicon nanowire sensor array using top–down CMOS technology, ” Sensor Actuat. A-Phys. 145–146, 207–213 (2008). [CrossRef]
  14. A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279(5348), 208–211 (1998). [CrossRef] [PubMed]
  15. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78(15), 2214–2216 (2001). [CrossRef]
  16. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. 15(5), 464–466 (2003). [CrossRef]
  17. X. Zhang, Y. Chen, T. Guo, L. Liu, M. Wei, Q. Li, C. Jia, Y. Su, “Zn-catalysed growth and optical properties of modulated ZnO hierarchical nanostructures,” J. Exp. Nanosci. 7(5), 513–519 (2012). [CrossRef]
  18. G. Filipič, U. Cvelbar, “Copper oxide nanowires: A review of growth,” Nanotechnology 23(19), 194001 (2012). [CrossRef] [PubMed]
  19. Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002). [CrossRef]
  20. S. Jin, D. Whang, M. C. McAlpine, R. S. Friedman, Y. Wu, C. M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4(5), 915–919 (2004). [CrossRef]
  21. Y. L. Zhang, J. Li, S. To, Y. Zhang, X. Ye, L. You, Y. Sun, “Automated nanomanipulation for nanodevice construction,” Nanotechnology 23(6), 065304 (2012). [CrossRef] [PubMed]
  22. J. Li, Y. Zhang, S. To, L. You, Y. Sun, “Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity,” ACS Nano 5(8), 6661–6668 (2011). [CrossRef] [PubMed]
  23. S. W. Lee, G. Jo, T. Lee, Y. G. Lee, “Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers,” Opt. Express 17(20), 17491–17501 (2009). [CrossRef] [PubMed]
  24. Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012). [CrossRef] [PubMed]
  25. A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, O. M. Maragò, “Size-Scaling in Optical Trapping of Silicon Nanowires,” Nano Lett. 11(11), 4879–4884 (2011). [CrossRef] [PubMed]
  26. S. H. Lee, H. J. Lee, K. Ino, H. Shiku, T. Yao, T. Matsue, “Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires,” J. Phys. Chem. C 113(45), 19376–19381 (2009). [CrossRef]
  27. E. M. Freer, O. Grachev, X. Duan, S. Martin, D. P. Stumbo, “High-yield self-limiting single-nanowire assembly with dielectrophoresis,” Nat. Nanotechnol. 5(7), 525–530 (2010). [CrossRef] [PubMed]
  28. Z. Wang, M. Kroener, P. Woias, “Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis,” Sensor Actuat. A-Phys. 188, 417–426 (2012). [CrossRef]
  29. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008). [CrossRef] [PubMed]
  30. A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, M. C. Wu, “Optically controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE J. Sel. Top. Quantum Electron. 13(2), 235–243 (2007). [CrossRef]
  31. B. J. Kirby, E. F. Hasselbrink., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis 25(2), 187–202 (2004). [CrossRef] [PubMed]
  32. J. G. Park, S. H. Lee, J. S. Ryu, Y. K. Hong, T. G. Kim, A. A. Busnaina, “Interfacial and electrokinetic characterization of IPA solutions related to semiconductor wafer drying and cleaning,” J. Electrochem. Soc. 153(9), G811–G814 (2006). [CrossRef]
  33. C. D. Fung, P. W. Cheung, W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron. Dev. 33(1), 8–18 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (4307 KB)     
» Media 2: MP4 (3199 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited