OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13835–13845

Polarimetric pixel using Seebeck nanoantennas

Alexander Cuadrado, Edgar Briones, Francisco J. González, and Javier Alda  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13835-13845 (2014)
http://dx.doi.org/10.1364/OE.22.013835


View Full Text Article

Enhanced HTML    Acrobat PDF (1582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical nanoantennas made of two metals are proposed to produce a Seebeck voltage proportional to the Stokes parameters of a light beam. The analysis is made using simulations in the electromagnetic and thermal domains. Each Stokes parameter is independently obtained from a dedicated nanoantenna configuration. S1 and S2 rely on the combination of two orthogonal dipoles. S3 is given by arranging two Archimedian spirals with opposite orientations. The analysis also includes an evaluation of the error associated with the Seebeck voltage, and the crosstalk between Stokes parameters. The results could lead to the conception of polarization sensors having a receiving area smaller than 10λ2. We illustrate these findings with a design of a polarimetric pixel.

© 2014 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(250.5403) Optoelectronics : Plasmonics
(110.5405) Imaging systems : Polarimetric imaging
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Detectors

History
Original Manuscript: March 10, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 1, 2014
Published: May 30, 2014

Citation
Alexander Cuadrado, Edgar Briones, Francisco J. González, and Javier Alda, "Polarimetric pixel using Seebeck nanoantennas," Opt. Express 22, 13835-13845 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  2. L. Novotny, N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). [CrossRef]
  3. J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1998). [CrossRef]
  4. L. Tang, S. E. Kocabas, S. Latif, A. k. Okyay, D.-S. Ly-Gagnon, K. C. Sraswat, D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-field dipole antenna,” Nat. Photonics 2, 226–229 (2008). [CrossRef]
  5. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothouizen, “Nanometer thin-film Bi-NiO-Bi diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998). [CrossRef]
  6. F. Gonzalez, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005). [CrossRef]
  7. A. Cuadrado, J. Alda, F. J. Gonzalez, “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics 6, 063512 (2012). [CrossRef]
  8. A. Cuadrado, J. Alda, F. J. Gonzalez, “Multiphysics simulation of optical nanoantennas working as distributed bolometers in ther infrared,” J. Nanophotonics 7, 073093 (2013). [CrossRef]
  9. A. Cuadrado, M. Silva-López, F. J. González, J. Alda, “Robustness of antenna-coupled distributed bolometers,” Opt. Lett. 38(19), 3784–3787 (2013). [CrossRef] [PubMed]
  10. C. Fu, “Antenna-coupled Thermopiles,” M.S. Dissertation, University of Central Florida, (1998).
  11. G. P. Szakmany, P. Krenz, L. C. Scheneider, A. O. Orlov, G. H. Bernstein, W. Porod, “Nanowire thermocouple characterization plattform,” IEEE Trans. Nanotechnol. 12(3), 309–313 (2013). [CrossRef]
  12. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, 2006).
  13. F. J. Gonzalez, C. Fumeaux, J. Alda, G. D. Boreman, “Thermal-impedance model of electrostatic discharge effects on microbolometers,” Microwave Opt. Technol. Lett. 26, 291–293 (2000). [CrossRef]
  14. G. Baffou, C. Girard, R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104, 36805 (2010). [CrossRef]
  15. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, J. E. Vaillancourt, “A primer on far-infrared poarimetry,” Publ. Astron. Soc. Pac. 112, 1215–1235 (2000). [CrossRef]
  16. J. Scott Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  17. F. Goudail, J. Scott Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” J. Opt. Soc. Am. A 28(1), 46–53 (2011). [CrossRef]
  18. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J-Appl. Phys. 40, 1–47 (2007). [CrossRef]
  19. R. Martinez-Herrero, P. M. Mejías, G. Piquero, V. Ramírez-Sánchez, “Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams,” Opt. Commun. 281, 1976–1980 (2008). [CrossRef]
  20. G. P. Nording, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A. 16(5), 1168–1174 (1999). [CrossRef]
  21. M. W. Kudenov, J. L. Pezzaniti, G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009). [CrossRef]
  22. P. Krenz, J. Alda, G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. & Technol. 51(4), 340–343 (2008). [CrossRef]
  23. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977, Chap. I).
  24. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  25. C. G. Mattsson, K. Bertilssson, G. Thungström, H.-E. Nilsson, H. Martin, “Thermal simulation and design optimization of a thermopile infrared detector with a SU-8 membrane,” J. Michromech. Microeng. 19, 055016 (2009). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997, Vol. III).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited