OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13889–13895

Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame

Chadi Abd Alrahman, Amir Khodabakhsh, Florian M. Schmidt, Zhechao Qu, and Aleksandra Foltynowicz  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13889-13895 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate near-infrared cavity-enhanced optical frequency comb spectroscopy of water in a premixed methane/air flat flame. The detection system is based on an Er:fiber femtosecond laser, a high finesse optical cavity containing the flame, and a fast-scanning Fourier transform spectrometer (FTS). High absorption sensitivity is obtained by the combination of a high-bandwidth two-point comb-cavity lock and auto-balanced detection in the FTS. The system allows recording high-temperature water absorption spectra with a resolution of 1 GHz and a bandwidth of 50 nm in an acquisition time of 0.4 s, with absorption sensitivity of 4.2 × 10−9 cm−1 Hz-1/2 per spectral element.

© 2014 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:

Original Manuscript: March 27, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: May 25, 2014
Published: May 30, 2014

Chadi Abd Alrahman, Amir Khodabakhsh, Florian M. Schmidt, Zhechao Qu, and Aleksandra Foltynowicz, "Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame," Opt. Express 22, 13889-13895 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Scherer, D. J. Rakestraw, “Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,” Chem. Phys. Lett. 265(1-2), 169–176 (1997). [CrossRef]
  2. J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water-vapor in an atmospheric flame,” Chem. Phys. Lett. 284(5-6), 387–395 (1998). [CrossRef]
  3. X. Zhou, J. B. Jeffries, R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81(5), 711–722 (2005). [CrossRef]
  4. J. Vanderover, M. A. Oehlschlaeger, “A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K,” Appl. Phys. B 99(1-2), 353–362 (2010). [CrossRef]
  5. R. S. Watt, T. Laurila, C. F. Kaminski, J. Hult, “Cavity enhanced spectroscopy of high-temperature H2O in the near-infrared using a supercontinuum light source,” Appl. Spectrosc. 63(12), 1389–1395 (2009). [CrossRef] [PubMed]
  6. B. Lohden, S. Kuznetsova, K. Sengstock, V. M. Baev, A. Goldman, S. Cheskis, B. Palsdottir, “Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments,” Appl. Phys. B 102(2), 331–344 (2011). [CrossRef]
  7. F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 3(1), 175–205 (2010). [CrossRef] [PubMed]
  8. R. Grilli, G. Mejean, S. Kassi, I. Ventrillard, C. Abd Alrahman, E. Fasci, D. Romanini, “Trace measurement of BrO at the ppt level by a transportable mode-locked frequency-doubled cavity-enhanced spectrometer,” Appl. Phys. B 107(1), 205–212 (2012). [CrossRef]
  9. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008). [CrossRef] [PubMed]
  10. A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared - application to trace detection of hydrogen peroxide,” Appl. Phys. B 110(2), 163–175 (2013). [CrossRef]
  11. K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, J. Ye, “Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 100(4), 917–924 (2010). [CrossRef]
  12. S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, P. De Natale, “Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities,” Appl. Phys. Lett. 102(20), 201116 (2013). [CrossRef]
  13. G. Hartung, J. Hult, C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17(9), 2485–2493 (2006). [CrossRef]
  14. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107(23), 233002 (2011). [CrossRef] [PubMed]
  15. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  16. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited