OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13940–13950

Controlling rejections of spoof surface plasmon polaritons using metamaterial particles

Bai Cao Pan, Zhen Liao, Jie Zhao, and Tie Jun Cui  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13940-13950 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the dispersion relation, surface plasmon polaritons (SPPs) or spoof SPPs are always propagating surface waves when the operating frequency is below the asymptotic limit – the surface plasma frequency. Here we propose a method to control the rejections of spoof SPPs using metamaterial particles. By introducing electrically resonant metamaterials near an ultrathin corrugated metallic strip – the spoof SPP waveguide – to produce tight coupling and mismatch of surface impedance, we show that the SPP modes are rejected near the resonant frequencies within the propagating band. Through the modulation of scaling factor of metamaterial particles, we can manipulate the rejections of SPP modes from narrowband to broadband. Both simulation and experiment results verify the tunability of SPP rejections, which have important applications in filtering SPP waves in plasmonic circuits and systems.

© 2014 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 8, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: May 22, 2014
Published: May 30, 2014

Bai Cao Pan, Zhen Liao, Jie Zhao, and Tie Jun Cui, "Controlling rejections of spoof surface plasmon polaritons using metamaterial particles," Opt. Express 22, 13940-13950 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  2. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  4. D. Lu, Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012). [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  6. C. Zhao, J. Zhang, “Plasmonic demultiplexer and guiding,” ACS Nano 4(11), 6433–6438 (2010). [CrossRef] [PubMed]
  7. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013). [CrossRef] [PubMed]
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  9. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  10. Z. Han, S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011). [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef] [PubMed]
  12. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  13. S. Linic, P. Christopher, D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011). [CrossRef] [PubMed]
  14. H. J. Lezec, J. A. Dionne, H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  15. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  16. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010). [CrossRef] [PubMed]
  17. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21(11), 1119–1128 (1950). [CrossRef]
  18. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  19. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  20. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009). [CrossRef] [PubMed]
  21. X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013). [CrossRef]
  22. X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013). [CrossRef] [PubMed]
  23. T. Jiang, L. Shen, J. J. Wu, T. J. Yang, Z. Ruan, L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011). [CrossRef]
  24. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013). [CrossRef]
  25. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui, “Broadband and high‐efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photon. Rev. 8(1), 146–151 (2014). [CrossRef]
  26. W. C. Chen, J. J. Mock, D. R. Smith, T. Akalin, A. N. D. W. J. Padilla, “Controlling gigahertz and terahertz surface electromagnetic waves with metamaterial resonators,” Phys. Rev. X 1(2), 021016 (2011).
  27. J. J. Wu, D. J. Hou, T. J. Yang, I. J. Hsieh, Y. H. Kao, H. E. Lin, “Bandpass filter based on low frequency spoof surface plasmon polaritons,” Electron. Lett. 48(5), 269–270 (2012). [CrossRef]
  28. B. Zhou, H. Li, X. Zou, T. J. Cui, “Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagnetics Res. 120, 235–247 (2011).
  29. H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011). [CrossRef]
  30. D. R. Smith, S. Schultz, P. Markoš, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited