OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13951–13961

Efficient fabrication of ultrasmooth and defect-free quartz glass surface by hydrodynamic effect polishing combined with ion beam figuring

Wenqiang Peng, Chaoliang Guan, and Shengyi Li  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13951-13961 (2014)
http://dx.doi.org/10.1364/OE.22.013951


View Full Text Article

Acrobat PDF (1330 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Material removal rate has greatly relied on the distribution of shear stress and dynamic pressure on the workpiece surface in hydrodynamic effect polishing (HEP). Fluid dynamic simulation results demonstrate that the higher rotation speed and smaller clearance will cause the larger material removal rate. Molecular dynamic (MD) calculations show the bonding energy of Si-O in the silicon-oxide nanoparticle is stronger than that in the quartz glass, and therefore the atoms can be dragged away from the quartz glass surface by the adsorbed silicon-oxide nanoparticle. The deep subsurface damage cannot be efficiently removed by HEP due to its extremely low removal rate. However, the subsurface damaged layer can be quickly removed by ion beam figuring (IBF), and a thinner layer containing the passivated scratches and pits will be left on the surface. The passivated layer is so thin that can be easily removed by HEP process with a low material rate under the large wheel-workpiece clearance. Combined with the IBF process, the subsurface damage and surface scratches have been efficiently removed after the HEP process. Meanwhile there are not obvious duplicated marks on the processed surface and the surface roughness has been improved to 0.130nm rms, 0.103nm Ra.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(220.5450) Optical design and fabrication : Polishing

ToC Category:
Materials

History
Original Manuscript: April 9, 2014
Manuscript Accepted: May 21, 2014
Published: May 30, 2014

Citation
Wenqiang Peng, Chaoliang Guan, and Shengyi Li, "Efficient fabrication of ultrasmooth and defect-free quartz glass surface by hydrodynamic effect polishing combined with ion beam figuring," Opt. Express 22, 13951-13961 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13951


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. H. Zhang, X. Z. Song, Y. Zhang, D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19(5), 054009 (2009). [CrossRef]
  2. M. Ando, M. Negishi, M. Takimoto, A. Deguchi, N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6(4), 111–120 (1995). [CrossRef]
  3. J. L. Wang, “Supersmooth Polishing with Sub-angstron Roughness,” Proc. SPIE 8416, 841609 (2012). [CrossRef]
  4. G. S. Lodha, K. Yamashita, H. Kunieda, Y. Tawara, J. Yu, Y. Namba, J. M. Bennett, “Effect of surface roughness and subsurface damage on grazing-incidence x-ray scattering and specular reflectance,” Appl. Opt. 37(22), 5239–5252 (1998). [CrossRef] [PubMed]
  5. U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Muenster, S. Burkart, S. Stacklies, C. Bustaus, H. Hoefer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, P. Kuerz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004). [CrossRef]
  6. J. Shen, S. Liu, K. Yi, H. He, J. Shao, Z. Fan, “Subsurface damage in optical substrates,” Optik (Stuttg.) 116(6), 288–294 (2005). [CrossRef]
  7. B. Ma, Z. X. Shen, P. F. He, F. Sha, C. L. Wang, B. Wang, Y. Q. Ji, H. S. Liu, W. H. Li, Z. S. Wang, “Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique,” Appl. Opt. 50(9), C279–C285 (2011). [CrossRef] [PubMed]
  8. J. M. Bennett, J. J. Shaffer, Y. Shibano, Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26(4), 696–703 (1987). [CrossRef] [PubMed]
  9. S. F. Soares, D. R. Baselt, J. P. Black, K. C. Jungling, W. K. Stowell, “Float-polishing process and analysis of float-polished quartz,” Appl. Opt. 33(1), 89–95 (1994). [CrossRef] [PubMed]
  10. Y. Mori, K. Yamauchi, K. Endo, “Elastic emission machining,” Precis. Eng. 9(3), 123–128 (1987). [CrossRef]
  11. M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, H. Mimura, K. Yamauchi, Y. Mori, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25(6), 2110–2113 (2007). [CrossRef]
  12. W. Q. Peng, C. L. Guan, S. Y. Li, “Ultrasmooth surface polishing based on the hydrodynamic effect,” Appl. Opt. 52(25), 6411–6416 (2013). [CrossRef] [PubMed]
  13. L. Zhou, “Study on theory and technology in ion beam figuring for optical surfaces,” Ph.D. dissertation (National University of Defense Technology, 2008), in Chinese.
  14. X. Xie, L. Zhou, Y. Dai, S. Li, “Ion beam machining error control and correction for small scale optics,” Appl. Opt. 50(27), 5221–5227 (2011). [CrossRef] [PubMed]
  15. V. A. Bakaev, T. I. Bakaeva, C. G. Pantano, “A study of glass surface heterogeneity and silylation by inverse gas chromatography,” J. Phys. Chem. B 106(47), 12231–12238 (2002). [CrossRef]
  16. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120(1-3), 152–171 (1990). [CrossRef]
  17. K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14(1-4), 232–235 (1999). [CrossRef]
  18. W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52(4), 043401 (2013). [CrossRef]
  19. L. Dan, X. L. Wu, “Optical emission from SiOx(x=1.2–1.6) nanoparticles irradiated by ultraviolet ozone,” J. Appl. Phys. 94(11), 7288–7290 (2003). [CrossRef]
  20. X. Z. Song, “Research on mechanism and experiments of nanoparticle colloid jet polishing,” Ph.D. dissertation (Harbin Institute of Technology, 2010), in Chinese.
  21. M. K. Kim, B. Y. Jang, J. S. Lee, J. S. Kim, S. Nahm, “Microstructures and electrochemical performances of nano-sized SiOx (1.18≤x≤1.83) as an anode material for a lithium(Li)-ion battery,” J. Power Sources 244, 115–121 (2013). [CrossRef]
  22. Y. Su, Y. H. Zhou, W. Huang, Z. N. Gu, “Study on reaction kinetics between silica glasses and hydrofluoric acid,” J. Chinese Ceram. Soc. 32, 287–293 (2004), in Chinese.
  23. Z. Wang, “Study on the detection and control techniques of subsurface damage in optical fabrication,” Ph.D. dissertation (National University of Defense Technology, 2008), in Chinese.
  24. T. Arnold, G. Bohm, R. Fechner, J. Meister, A. Nickel, F. Frost, T. Hansel, A. Schindler, “Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook,” Nucl. Instrum. Methods Phys. Res. A 616(2-3), 147–156 (2010). [CrossRef]
  25. M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40(6-7), 1002–1006 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited