OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13962–13968

Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers

Guancheng Gu, Fanting Kong, Thomas Hawkins, Joshua Parsons, Maxwell Jones, Christopher Dunn, Monica T. Kalichevsky-Dong, Kunimasa Saitoh, and Liang Dong  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13962-13968 (2014)
http://dx.doi.org/10.1364/OE.22.013962


View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-mode operation in a large-mode-area fiber laser is highly desired for power scaling. We have, for the first time, demonstrated a 50μm-core-diameter Yb-doped all-solid photonic bandgap fiber laser with a mode area over 4 times that of the previous demonstration. 75W output power has been generated with a diffraction-limited beam and an efficiency of 70% relative to the launched pump power. We have also experimentally confirmed that a robust single-mode regime exists near the high frequency edge of the bandgap. These fibers only guide light within the bandgap over a narrow spectral range, which is essential for lasing far from the gain peak and suppression of stimulated Raman scattering. This work demonstrates the strong potential for mode area scaling of in single-mode all-solid photonic bandgap fibers.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3295) Lasers and laser optics : Laser beam characterization
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 10, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: May 23, 2014
Published: May 30, 2014

Citation
Guancheng Gu, Fanting Kong, Thomas Hawkins, Joshua Parsons, Maxwell Jones, Christopher Dunn, Monica T. Kalichevsky-Dong, Kunimasa Saitoh, and Liang Dong, "Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers," Opt. Express 22, 13962-13968 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010). [CrossRef]
  2. R. Royon, J. Lhermite, L. Sarger, E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013). [CrossRef] [PubMed]
  3. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005). [CrossRef] [PubMed]
  4. E. M. Dianov, M. E. Likhachev, S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 20–29 (2009). [CrossRef]
  5. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  6. R. F. Cregan, J. C. Knight, P. S. J. Russell, P. J. Roberts, “Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber,” J. Lightwave Technol. 17(11), 2138–2141 (1999). [CrossRef]
  7. W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. S. J. Russell, J. Arriaga, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36(17), 1452–1454 (2000). [CrossRef]
  8. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003). [CrossRef] [PubMed]
  9. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). [CrossRef] [PubMed]
  10. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012). [CrossRef] [PubMed]
  11. L. Dong, T. Wu, H. A. Mckay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009). [CrossRef]
  12. L. Dong, H. A. Mckay, A. Marcinkevicius, L. Fu, J. Li, B. K. Thomas, M. E. Fermann, “Extending effective area of fundamental mode in optical fibers,” J. Lightwave Technol. 27(11), 1565–1570 (2009). [CrossRef]
  13. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013). [CrossRef] [PubMed]
  14. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013). [CrossRef] [PubMed]
  15. A. Isomäki, O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006). [CrossRef] [PubMed]
  16. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009). [CrossRef] [PubMed]
  17. B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19(12), 11852–11866 (2011). [CrossRef] [PubMed]
  18. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012). [CrossRef] [PubMed]
  19. S. Saitoh, K. Saitoh, M. Kashiwagi, S. Matsuo, L. Dong, “Design optimization of large-mode-area all-solid photonic bandgap fibers for high-power laser applications,” J. Lightwave Technol. 32(3), 440–449 (2014). [CrossRef]
  20. F. Kong, K. Saitoh, D. Mcclane, T. Hawkins, P. Foy, G. Gu, L. Dong, “Mode area scaling with all-solid photonic bandgap fibers,” Opt. Express 20(24), 26363–26372 (2012). [CrossRef] [PubMed]
  21. E. Coscelli, T. T. Alkeskjold, A. Cucinotta, and S. Selleri, “Design of double-cladding large mode area all-solid photonic bandgap fibers,” in SPIE LASE (International Society for Optics and Photonics, 2014), p. 89610F.
  22. F. Jansen, F. Stutzki, H.-J. Otto, M. Baumgartl, C. Jauregui, J. Limpert, A. Tünnermann, “The influence of index-depressions in core-pumped Yb-doped large pitch fibers,” Opt. Express 18(26), 26834–26842 (2010). [CrossRef] [PubMed]
  23. M. J. F. Digonnet, H. K. Kim, G. S. Kino, S. Fan, “Understanding air-core photonic-bandgap fibers: analogy to conventional fibers,” J. Light. Technol. 23, 4169–4177 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited