OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13988–14003

Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13988-14003 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode-pumped alkali laser (DPAL) is one of the most hopeful candidates to achieve high power performances. As the laser medium is in a gas-state, populations of energy-levels of a DPAL are strongly dependent on the vapor temperature. Thus, the temperature distribution directly determines the output characteristics of a DPAL. In this report, we developed a systematic model by combining the procedures of heat transfer and laser kinetics together to explore the radial temperature distribution in the transverse section of a cesium vapor cell. A cyclic iterative approach is adopted to calculate the population densities. The corresponding temperature distributions have been obtained for different beam waists and pump powers. The conclusion is thought to be useful for realizing a DPAL with high output power.

© 2014 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3430) Lasers and laser optics : Laser theory
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped

ToC Category:
Atomic and Molecular Physics

Original Manuscript: April 18, 2014
Revised Manuscript: May 18, 2014
Manuscript Accepted: May 18, 2014
Published: May 30, 2014

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang, "Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I," Opt. Express 22, 13988-14003 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. F. Krupke, “Diode Pumped Alkali Laser,” US Patent Application US 2003/0099272 Al, (2003).
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003). [CrossRef] [PubMed]
  3. W. F. Krupke, R. J. Beach, S. A. Payne, V. K. Kanz, J. T. Early, “DPAL: A new class of lasers for CW power beaming at ideal photovoltaic cell wavelengths,” 2nd International Symposium on Beamed Energy Propulsion (Japan), (2003).
  4. R. H. Page, R. J. Beach, V. K. Kanz, W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006). [CrossRef] [PubMed]
  5. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006). [CrossRef]
  6. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008). [CrossRef] [PubMed]
  7. R. Z. Hua, S. Wada, H. Tashiro, “Versatile, compact, TEM00-mode resonator for side-pumped single-rod solid-state lasers,” Appl. Opt. 40(15), 2468–2474 (2001). [CrossRef] [PubMed]
  8. Y. Wang, H. Kan, “Improvement on evaluating absorption efficiency of a medium rod for LD side-pumped solid-state lasers,” Opt. Commun. 226(1-6), 303–316 (2003). [CrossRef]
  9. Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007). [CrossRef]
  10. B. V. Zhdanov, R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007). [CrossRef] [PubMed]
  11. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012). [CrossRef]
  12. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004). [CrossRef]
  13. Y. Wang, K. Inoue, H. Kan, T. Ogawa, S. Wada, “A MOPA with double-end pumped configuration using total internal reflection,” Laser Phys. 20(2), 447–453 (2010). [CrossRef]
  14. M. Stanghini, M. Basso, R. Genesio, A. Tesi, R. Meucci, M. Ciofini, “A new three-equation model for the CO2 laser,” IEEE J. Quantum Electron. 32(7), 1126–1131 (1996). [CrossRef]
  15. R. J. Garman, “Modelling of the intracavity optical fields in a copper vapour laser,” Opt. Commun. 119(3-4), 415–423 (1995). [CrossRef]
  16. C. C. Lai, K. Y. Huang, H. J. Tsai, K. Y. Hsu, S. K. Liu, C. T. Cheng, K. D. Ji, C. P. Ke, S. R. Lin, S. L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009). [CrossRef] [PubMed]
  17. D. A. Steck, Rubidium 85 D Line Data. Available: http://steck.us/alkalidata .
  18. C. V. Sulham, G. P. Perram, M. P. Wilkinson, D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283(21), 4328–4332 (2010). [CrossRef]
  19. Z. N. Yang, H. Y. Wang, Q. S. Lu, W. H. Hua, X. J. Xu, “Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission,” Opt. Express 19(23), 23118–23131 (2011). [CrossRef] [PubMed]
  20. Q. Zhu, B. L. Pan, L. Chen, Y. J. Wang, X. Y. Zhang, “Analysis of temperature distributions in diode-pumped alkali vapor lasers,” Opt. Commun. 283(11), 2406–2410 (2010). [CrossRef]
  21. Y. F. Liu, B. L. Pan, J. Yang, Y. J. Wang, M. H. Li, “Thermal Effects in High-Power Double Diode-End-Pumped Cs Vapor Lasers,” IEEE J. Quantum Electron. 48(4), 485–489 (2012). [CrossRef]
  22. B. D. Barmashenko, S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012). [CrossRef] [PubMed]
  23. B. D. Barmashenko, S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013). [CrossRef]
  24. B. D. Barmashenko, S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013). [CrossRef]
  25. S. Rosenwaks, B. D. Barmashenko and Waichman, “Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation”, Proc. SPIE 8962, High Energy/Average Power Lasers and Intense Beam Applications VII, 896209, 1–9 (2014).
  26. S. Kiwan, O. Zeitoun, “Natural convection in a horizontal cylindrical annulus using porous fins,” Int. J. Numer. Methods Heat Fluid Flow 18(5), 618–634 (2008). [CrossRef]
  27. P. Teerstra and M. M. Yovanovich, “ Comprehensive review of natural convection in horizontal circular annuli,” in 7th AIAA/ ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, New Mexico, 15 –18 June 1998 (AIAA, 1998), pp. 141–152.
  28. Z. N. Yang, H. Y. Wang, Q. S. Lu, Y. D. Li, W. H. Hua, X. J. Xu, J. B. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011). [CrossRef]
  29. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing[J], II ed, (California Technical Publishing, 1999), Chapter 25.
  30. D. A. Steck, “Cesium D line data,” Available: http://steck.us/alkalidata
  31. M. J. Latif, Heat Conduction, III ed., (Verlag Berlin and Heidelberg GmbH & Co. K, 2009), Chapter 1,.
  32. C. L. Yaws, Matheson Gas Data Book, VII ed., (McGraw-Hill & Matheson Tri-Gas, 2001), Appendix 23.
  33. H. Cai, Y. Wang, W. Zhang, L. P. Xue, H. Y. Wang, J. H. Han, and Z. Y. Liao, “Characteristic analyses of a diode-pumped rubidium vapor laser using a kinetic algorithm,” Opt. & Laser Technol., to be submitted.
  34. N. D. Zameroski, G. D. Hager, W. Rudolph, D. A. Hostutler, “Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser,” J. Opt. Soc. Am. B 28(5), 1088–1099 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited