OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 14004–14013

Coupled-resonator optical waveguides for temporal integration of optical signals

Nikolay L. Kazanskiy and Pavel G. Serafimovich  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 14004-14013 (2014)
http://dx.doi.org/10.1364/OE.22.014004


View Full Text Article

Enhanced HTML    Acrobat PDF (2328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose and numerically investigate an all-optical temporal integrator based on a photonic crystal cavity. We show that an array of photonic crystal cavities enables high-order temporal integration. The effect of the value of the cavity’s free spectral range on the accuracy of the integration is considered. The influence of the coupling coefficients in the resonator array on the integration accuracy is demonstrated. A compact integrator based on a photonic crystal nanobeam cavity is designed, which allows high-precision integration of optical pulses of subpicosecond duration.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4560) Optics in computing : Optical data processing
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Integrated Optics

History
Original Manuscript: April 23, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: May 22, 2014
Published: May 30, 2014

Citation
Nikolay L. Kazanskiy and Pavel G. Serafimovich, "Coupled-resonator optical waveguides for temporal integration of optical signals," Opt. Express 22, 14004-14013 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-14004


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010). [CrossRef]
  2. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007). [CrossRef] [PubMed]
  3. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1(3), 29 (2010). [CrossRef] [PubMed]
  4. A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. Yao, J. Azaña, “Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” Opt. Lett. 37(8), 1355–1357 (2012). [CrossRef] [PubMed]
  5. Y. Park, T. J. Ahn, Y. Dai, J. Yao, J. Azaña, “All-optical temporal integration of ultrafast pulse waveforms,” Opt. Express 16(22), 17817–17825 (2008). [CrossRef] [PubMed]
  6. N. Q. Ngo, “Optical integrator for optical dark-soliton detection and pulse shaping,” Appl. Opt. 45(26), 6785–6791 (2006). [CrossRef] [PubMed]
  7. Y. Jin, P. Costanzo-Caso, S. Granieri, A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 77970J (2010). [CrossRef]
  8. Y. Ding, X. Zhang, X. Zhang, D. Huang, “Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit,” Opt. Express 17(15), 12835–12848 (2009). [CrossRef] [PubMed]
  9. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008). [CrossRef] [PubMed]
  10. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  11. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8(9), 204 (2006). [CrossRef]
  12. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  13. H. C. Liu, A. Yariv, “Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs),” Opt. Express 19(18), 17653–17668 (2011). [CrossRef] [PubMed]
  14. M. H. Asghari, J. Azaña, “On the design of efficient and accurate arbitrary-order temporal optical integrators using fiber bragg gratings,” J. Lightwave Technol. J. 27(17), 3888–3895 (2009). [CrossRef]
  15. N. L. Kazanskiy, P. G. Serafimovich, S. N. Khonina, “Use of photonic crystal cavities for temporal differentiation of optical signals,” Opt. Lett. 38(7), 1149–1151 (2013). [CrossRef] [PubMed]
  16. H. C. Liu, A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express 20(8), 9249–9263 (2012). [CrossRef] [PubMed]
  17. Q. Quan, M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(5), 18529–18542 (2011). [CrossRef] [PubMed]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  19. D. L. Golovashkin, N. L. Kazanskiy, “Mesh domain decomposition in the finite-difference solution of Maxwell’s equations,” Opt. Mem. Neural Networks 18(3), 203–211 (2009). [CrossRef]
  20. M. H. Asghari, C. Wang, J. Yao, J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett. 35(8), 1191–1193 (2010). [CrossRef] [PubMed]
  21. N. Huang, M. Li, R. Ashrafi, L. Wang, X. Wang, J. Azaña, N. Zhu, “Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window,” Opt. Express 22(3), 3105–3116 (2014). [CrossRef] [PubMed]
  22. G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99(7), 071105 (2011). [CrossRef]
  23. M. H. Asghari, J. Azaña, “Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings,” Opt. Express 16(15), 11459–11469 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited