OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 14022–14030

Tunable bulk polaritons of graphene-based hyperbolic metamaterials

Liwei Zhang, Zhengren Zhang, Chaoyang Kang, Bei Cheng, Liang Chen, Xuefeng Yang, Jian Wang, Weibing Li, and Baoji Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 14022-14030 (2014)
http://dx.doi.org/10.1364/OE.22.014022


View Full Text Article

Enhanced HTML    Acrobat PDF (2208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The tunable hyperbolic metamaterial (HMM) based on the graphene-dielectric layered structure at THz frequency is presented, and the surface and bulk polaritons of the graphene-based HMM are theoretically studied. It is found that the dispersions of the polaritons can be tuned by varying the Fermi energy of graphene sheets, the graphene-dielectric layers and the layer number of graphene sheets. In addition, the highly confined bulk polariton mode can be excited and is manifested in an attenuated total reflection configuration as a sharp drop in the reflectance. Such properties can be used in tunable optical reflection modulation with the assistance of bulk polaritons.

© 2014 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: April 28, 2014
Revised Manuscript: May 25, 2014
Manuscript Accepted: May 27, 2014
Published: May 30, 2014

Citation
Liwei Zhang, Zhengren Zhang, Chaoyang Kang, Bei Cheng, Liang Chen, Xuefeng Yang, Jian Wang, Weibing Li, and Baoji Wang, "Tunable bulk polaritons of graphene-based hyperbolic metamaterials," Opt. Express 22, 14022-14030 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-14022


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  2. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012). [CrossRef] [PubMed]
  3. A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]
  4. Z. Zhang, H. Li, Z. Gong, Y. Fan, T. Zhang, H. Chen, “Extend the omnidirectional electronic gap of Thue-Morse aperiodic gapped graphene superlattices,” Appl. Phys. Lett. 101(25), 252104 (2012). [CrossRef]
  5. V. Chabot, D. Higgins, A. P. Yu, X. C. Xiao, Z. W. Chen, J. J. Zhang, “A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment,” Energy Environ. Sci. 7(5), 1564–1596 (2014).
  6. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9(1), 30–35 (2009). [CrossRef] [PubMed]
  7. A. Vakil, N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  8. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]
  9. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  10. P. Y. Chen, A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011). [CrossRef] [PubMed]
  11. F. Liu, E. Cubukcu, “Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons,” Phys. Rev. B 88(11), 115439 (2013). [CrossRef]
  12. P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6(4), 259–264 (2012). [CrossRef]
  13. K. V. Sreekanth, A. De Luca, G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013). [CrossRef]
  14. I. V. Iorsh, I. S. Mukhin, I. V. Shadrivov, P. A. Belov, Y. S. Kivshar, “Hyperbolic metamaterials based on multilayer graphene structures,” Phys. Rev. B 87(7), 075416 (2013). [CrossRef]
  15. M. A. K. Othman, C. Guclu, F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013). [CrossRef] [PubMed]
  16. T. Zhang, L. Chen, X. Li, “Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies,” Opt. Express 21(18), 20888–20899 (2013). [CrossRef] [PubMed]
  17. B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013). [CrossRef] [PubMed]
  18. C. J. Zapata-Rodríguez, J. J. Miret, S. Vuković, M. R. Belić, “Engineered surface waves in hyperbolic metamaterials,” Opt. Express 21(16), 19113–19127 (2013). [CrossRef] [PubMed]
  19. O. Kidwai, S. V. Zhukovsky, J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations,” Phys. Rev. A 85(5), 053842 (2012). [CrossRef]
  20. A. A. Avetisyan, B. Partoens, F. M. Peeters, “Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates,” Phys. Rev. B 80(19), 195401 (2009). [CrossRef]
  21. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, F. H. L. Koppens, “Plasmon-Induced Doping of Graphene,” Nature 487, 77–81 (2012).
  22. Y. J. Xiang, J. Guo, X. Y. Dai, S. C. Wen, D. Y. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014). [CrossRef] [PubMed]
  23. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008). [CrossRef]
  24. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012). [PubMed]
  25. B. D. Guo, L. Fang, B. H. Zhang, J. R. Gong, “Graphene Doping: A Review,” Insciences J. 1(2), 80–89 (2011). [CrossRef]
  26. W. R. Zhu, I. D. Rukhlenko, M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013). [CrossRef]
  27. S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, M. Helm, “Carrier Relaxation in Epitaxial Graphene Photoexcited Near the Dirac Point,” Phys. Rev. Lett. 107(23), 237401 (2011). [CrossRef] [PubMed]
  28. I. Avrutsky, I. Salakhutdinov, J. Elser, V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007). [CrossRef]
  29. K. Park, B. J. Lee, C. J. Fu, Z. M. Zhang, “Study of the surface and bulk polaritons with an egative index metamateria,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005). [CrossRef]
  30. H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100(24), 243110 (2012). [CrossRef]
  31. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471(7340), 617–620 (2011). [CrossRef] [PubMed]
  32. G. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008). [CrossRef]
  33. C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett. 101(11), 111609 (2012). [CrossRef]
  34. X. L. Shi, S. L. Zheng, H. Chi, X. F. Jin, X. M. Zhang, “All-optical modulator with longrange surface plasmon resonance,” Opt. Laser Technol. 49, 316–319 (2013). [CrossRef]
  35. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-absorption Modulators,” Nano Lett. 12(9), 4518–4522 (2012). [CrossRef] [PubMed]
  36. D. G. Cooke, P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited