OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 14031–14040

All-digital wavefront sensing for structured light beams

Angela Dudley, Giovanni Milione, Robert R. Alfano, and Andrew Forbes  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 14031-14040 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new all-digital technique to extract the wavefront of a structured light beam. Our method employs non-homogeneous polarization optics together with dynamic, digital holograms written to a spatial light modulator to measure the phase relationship between orthogonal polarization states in real-time, thereby accessing the wavefront information. Importantly, we show how this can be applied to measuring the wavefront of propagating light fields, over extended distances, without any moving components. We illustrate the versatility of the tool by measuring propagating optical vortices, Bessel, Airy and speckle fields. The comparison of the extracted and programmed wavefronts yields excellent agreement.

© 2014 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(090.1995) Holography : Digital holography
(140.3295) Lasers and laser optics : Laser beam characterization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 1, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 23, 2014
Published: May 30, 2014

Angela Dudley, Giovanni Milione, Robert R. Alfano, and Andrew Forbes, "All-digital wavefront sensing for structured light beams," Opt. Express 22, 14031-14040 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Hermann, E. J. Fernndez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef] [PubMed]
  2. A. Roorda, F. Romero-Borja, I. William Donnelly, H. Queener, T. Hebert, M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [CrossRef] [PubMed]
  3. M. A. A. Neil, R. Juakaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Adaptive aberration correction in a twophoton microscope,” J. Microsc. 200, 105–108 (2000). [CrossRef]
  4. M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. 103, 17137–17142 (2006). [CrossRef] [PubMed]
  5. M. Booth, M. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998). [CrossRef]
  6. J. C. Ricklin, F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  7. F. Roddier, M. Séchaud, G. Rousset, P.-Y. Madec, M. Northcott, J.-L. Beuzit, F. Rigaut, J. Beckers, D. Sandler, P. Lena, O. Lai, Adaptive Optics in Astronomy (Cambridge University, 1999). [CrossRef]
  8. M. Paurisse, M. Hanna, F. Druon, P. Georges, “Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography,” Opt. Lett. 35, 1428–1430 (2010). [CrossRef] [PubMed]
  9. R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999). [CrossRef]
  10. S. R. Chamot, C. Dainty, S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006). [CrossRef] [PubMed]
  11. M. P. Rimmer, J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14, 142–150 (1975). [CrossRef] [PubMed]
  12. S. Velghe, J. Primot, N. Guérineau, M. Cohen, B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005). [CrossRef] [PubMed]
  13. J. Millerd, N. Brock, J. Hayes, M. North Morris, M. Novak, J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  14. M. North Morris, J. Millerd, N. Brock, J. Hayes, B. Saif, “Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer,” Proc. SPIE 5869, 58691B (2005). [CrossRef]
  15. R. G. Lane, M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992). [CrossRef] [PubMed]
  16. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20, 19714–19725 (2012). [CrossRef] [PubMed]
  17. C. Schulze, A. Dudley, D. Flamm, M. Duparré, A. Forbes, “Reconstruction of laser beam wavefronts based on mode analysis,” App. Opt. 52(21), 5312–5317 (2013). [CrossRef]
  18. G. G. Stokes, ”On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc., 96, 399 (1852).
  19. G. G. Stokes, Mathematical and Physical Papers (Cambridge University, 1922).
  20. I. Freund, ”Poincaré vortices,” Opt. Lett. 26, 1996–1998 (2001). [CrossRef]
  21. V. Denisenko, A. Minovich, A. Desyatnikov, W. Krolikowski, M. Soskin, Y. Kivshar, ”Mapping phases of singular scalar light fields,” Opt. Lett. 33, 89–91 (2008). [CrossRef]
  22. I. Freund, A. I. Mokhun, M. S. Soskin, O. V. Angelsky, I. I. Mokhun, ”Stokes singularity relations,” Opt. Lett. 27, 545–547 (2002). [CrossRef]
  23. S. Vyas, Y. Kozawa, S. Sato, ”Polarization singularities in superposition of vector beams,” Opt. Express 21(7), 8972–8986 (2013). [CrossRef] [PubMed]
  24. H. Yan, B. Lü, ”Spectral Stokes singularities of stochastic electromagnetic beams,” Opt. Lett. 34(13), 1933–1935 (2009). [CrossRef] [PubMed]
  25. H. Yan, B. Lü, ”Propagation of spectral Stokes singularities of stochastic electromagnetic beams through an astigmatic lens,” J. Opt. Soc. Am. B 27(3), 375–381 (2010). [CrossRef]
  26. Y. Luo, B. Lü, ”Spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture objective,” J. Opt. 12, 115703(2010). [CrossRef]
  27. O. Korotkova, E. Wolf, ”Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30(2), 198–200 (2005). [CrossRef] [PubMed]
  28. D. Andrews, Structured Light and Its Applications (Academic, 2011).
  29. A. Forbes, Laser Beam Propagation: Generation and Propagation of Customized Light (CRC, 2013).
  30. Y. Li, J. Kim, M. J. Escuti, “Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings,” Appl. Opt. 51, 8236–8245 (2012). [CrossRef] [PubMed]
  31. A. Dudley, Y. Li, T. Mhlanga, M. Escuti, A. Forbes, “Generating and measuring nondiffracting vector Bessel beams,” Opt. Lett. 38(17), 3429–3432 (2013). [CrossRef] [PubMed]
  32. D. Goldstein, Polarized Light (Marcel Dekker, 2004).
  33. C. Schulze, D. Flamm, M. Duparré, A. Forbes, “Beam-quality measurements using a spatial light modulator,” Opt. Lett., 37(22), 4687–4689 (2012). [CrossRef]
  34. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013). [CrossRef] [PubMed]
  35. D. Flamm, C. Schulze, D. Naidoo, S. Schröter, A. Forbes, M. Duparré, “All-digital holographic tool for mode excitation and analysis in optical fibers,” J. Lightwave Technol. 31(7), 1023–1032 (2013). [CrossRef]
  36. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, M. Duparré, “Measuring the spatial polarization distribution of multimode beams emerging from passive step-index large-mode area fibers,” Opt. Lett. 35, 3429–3431 (2010). [CrossRef] [PubMed]
  37. Q. Cui, M. Li, Z. Yu, “Influence of topological charges on random wandering of optical vortex propagating through turbulent atmosphere,” Opt. Comm. 329, 10–14 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2684 KB)     
» Media 2: MOV (2677 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited