OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14148–14154

Near-field observation of light propagation in nanocoax waveguides

Juan M. Merlo, Fan Ye, Binod Rizal, Michael J. Burns, and Michael J. Naughton  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14148-14154 (2014)
http://dx.doi.org/10.1364/OE.22.014148


View Full Text Article

Enhanced HTML    Acrobat PDF (1087 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the observation of propagating modes of visible and near infrared light in nanoscale coaxial (metal-dielectric-metal) structures, using near-field scanning optical microscopy. Together with numerical calculations, we show that the propagated modes have different nature depending on the excitation wavelength, i.e., plasmonic TE11 and TE21 modes in the near infrared and photonic TE31, TE41 and TM11 modes in the visible. Far field transmission out of the nanocoaxes is dominated by the superposition of Fabry-Perot cavity modes resonating in the structures, consistent with theory. Such coaxial optical waveguides may be useful for future nanoscale photonic systems.

© 2014 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: April 25, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 22, 2014
Published: June 2, 2014

Citation
Juan M. Merlo, Fan Ye, Binod Rizal, Michael J. Burns, and Michael J. Naughton, "Near-field observation of light propagation in nanocoax waveguides," Opt. Express 22, 14148-14154 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14148


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011). [CrossRef]
  2. J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013). [CrossRef]
  3. D. Pozar, Microwave Engineering (John Wiley and Sons, 2005).
  4. W. Thomson, “On the theory of the electric telegraph,” Proc. R. Soc. Lond. 7(0), 382–399 (1854). [CrossRef]
  5. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006). [CrossRef]
  6. F. I. Baida, D. van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004). [CrossRef]
  7. R. de Waele, S. P. Burgos, H. A. Atwater, and A. Polman, “Negative refractive index in coaxial plasmon waveguides,” Opt. Express 18(12), 12770–12778 (2010). [CrossRef] [PubMed]
  8. A. A. E. Saleh and J. A. Dionne, “Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices,” Phys. Rev. B 85(4), 045407 (2012). [CrossRef]
  9. Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, “Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range,” Phot. Nano. Fund. Appl. 4(1), 47–53 (2006). [CrossRef]
  10. J. Rybczynski, J. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, A. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007). [CrossRef]
  11. Y. Peng, X. Wang, and K. Kempa, “TEM-like optical mode of a coaxial nanowaveguide,” Opt. Express 16(3), 1758–1763 (2008). [CrossRef] [PubMed]
  12. K. Kempa, X. Wang, Z. F. Ren, and M. J. Naughton, “Discretely guided electromagnetic effective medium,” Appl. Phys. Lett. 92(4), 043114 (2008). [CrossRef]
  13. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012). [CrossRef] [PubMed]
  14. Z. G. Chen, J. Zou, G. Q. Lu, G. Liu, F. Li, and H. M. Cheng, “ZnS nanowires and their coaxial lateral nanowire heterostructures with BN,” Appl. Phys. Lett. 90(10), 103117 (2007). [CrossRef]
  15. C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires,” Nano Lett. 8(10), 3288–3292 (2008). [CrossRef] [PubMed]
  16. B. Di Bartolo, J. Collins, and L. Silvestri, Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale (Springer, 2013), Ch. 18.
  17. M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi RRL 4(7), 181–183 (2010). [CrossRef]
  18. T. Paudel, J. Rybczynski, Y. T. Gao, Y. C. Lan, Y. Peng, K. Kempa, M. J. Naughton, and Z. F. Ren, “Nanocoax solar cells based on aligned multiwalled carbon nanotube arrays,” Phys. Status Solidi A 208(4), 924–927 (2011). [CrossRef]
  19. H. Zhao, B. Rizal, G. McMahon, H. Wang, P. Dhakal, T. Kirkpatrick, Z. Ren, T. C. Chiles, M. J. Naughton, and D. Cai, “Ultrasensitive chemical detection using a nanocoax sensor,” ACS Nano 6(4), 3171–3178 (2012). [CrossRef] [PubMed]
  20. B. Rizal, M. M. Archibald, T. Connolly, S. Shepard, M. J. Burns, T. C. Chiles, and M. J. Naughton, “Nanocoax-based electrochemical sensor,” Anal. Chem. 85(21), 10040–10044 (2013). [CrossRef] [PubMed]
  21. J. M. Merlo, J. F. Aguilar, H. Gonzalez-Hernandez, and N. Caballero, “Properties of the near field interactions produced by spherical nanoparticles,” Proc. SPIE 8011, 801141 (2011). [CrossRef]
  22. F. Ye, M. J. Burns, and M. J. Naughton, “Plasmonic halos--Optical surface plasmon drumhead modes,” Nano Lett. 13(2), 519–523 (2013). [CrossRef] [PubMed]
  23. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013). [CrossRef] [PubMed]
  24. D. Courjon, Near Field Microscopy and Near Field Optics (Imperial College, 2003).
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  26. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  27. http://refractiveindex.info/?group=CRYSTALS&material=Al2O3
  28. M. Bednorz, M. Urbańczyk, T. Pustelny, A. Piotrowska, E. Papis, Z. Sidor, and E. Kamińska, “Application of SU8 polymer in waveguide interferometer ammonia sensor,” Mol. Quant. Acoust. 27, 31–40 (2006).
  29. R. A. Kirkman and M. Kline, “The transverse electric modes in coaxial cavities,” Proc. I.R.E. 34, 14 – 17 (1946). [CrossRef]
  30. O. Kozina, I. Nefedov, L. Melnikov, and A. Karilainen, “Plasmonic coaxial waveguides with complex shapes of cross-sections,” Materials 4(1), 104–116 (2011). [CrossRef]
  31. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited