OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14166–14179

Performance of ultra-thin SOI-based resonators for sensing applications

Sahba Talebi Fard, Valentina Donzella, Shon A. Schmidt, Jonas Flueckiger, Samantha M. Grist, Pouria Talebi Fard, Yichen Wu, Rick J. Bojko, Ezra Kwok, Nicolas A. F. Jaeger, Daniel M. Ratner, and Lukas Chrostowski  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14166-14179 (2014)
http://dx.doi.org/10.1364/OE.22.014166


View Full Text Article

Enhanced HTML    Acrobat PDF (2833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents simulation and experimental results of ultra-thin optical ring resonators, having larger Evanescent Field (EF) penetration depths, and therefore larger sensitivities, as compared to conventional Silicon-on-Insulator (SOI)-based resonator sensors. Having higher sensitivities to the changes in the refractive indices of the cladding media is desirable for sensing applications, as the interactions of interest take place in this region. Using ultra-thin waveguides (<100 nm thick) shows promise to enhance sensitivity for both bulk and surface sensing, due to increased penetration of the EF into the cladding. In this work, the designs and characterization of ultra-thin resonator sensors, within the constraints of a multi-project wafer service that offers three waveguide thicknesses (90 nm, 150 nm, and 220 nm), are presented. These services typically allow efficient integration of biosensors with on-chip detectors, moving towards the implementation of lab-on-chip (LoC) systems. Also, higher temperature stability of ultra-thin resonator sensors were characterized and, in the presence of intentional environmental (temperature) fluctuations, were compared to standard transverse electric SOI-based resonator sensors.

© 2014 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: February 26, 2014
Revised Manuscript: May 15, 2014
Manuscript Accepted: May 17, 2014
Published: June 2, 2014

Citation
Sahba Talebi Fard, Valentina Donzella, Shon A. Schmidt, Jonas Flueckiger, Samantha M. Grist, Pouria Talebi Fard, Yichen Wu, Rick J. Bojko, Ezra Kwok, Nicolas A. F. Jaeger, Daniel M. Ratner, and Lukas Chrostowski, "Performance of ultra-thin SOI-based resonators for sensing applications," Opt. Express 22, 14166-14179 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized bragg-grating add-drop filter,” Opt. Lett. 38, 3068–3070 (2013). [CrossRef] [PubMed]
  2. W. Shi, X. Wang, W. Zhang, H. Yun, N. A. F. Jaeger, and L. Chrostowski, “Integrated microring add-drop filters with contradirectional couplers,” CLEO (Conference on Lasers and Electro-Optics) 2012 p. JW4A.91 (2012).
  3. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009). [CrossRef] [PubMed]
  4. O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmrna using silicon photonic microring resonators,” Biosensors and Bioelectronics 36, 56–61 (2012). [CrossRef] [PubMed]
  5. W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays,” Anal. Chem. 85, 805–810 (2012). [CrossRef] [PubMed]
  6. M. R. Tomita, L. S. Russ, R. Sridhar, and B. J. Naughton, “Smart home with healthcare technologies for community-dwelling older adults,” Available as on 13th of March (2012).
  7. S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013). [CrossRef]
  8. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. Luebbert, and et al., “Silicon photonic wire biosensor array for multiplexed, real-time and label-free molecular detection,” Opt. Lett. 34, 3598–3600 (2009). [CrossRef] [PubMed]
  9. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010). [CrossRef]
  10. M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosensors and Bioelectronics 26, 1283–1291 (2010). [CrossRef] [PubMed]
  11. C. L. Arce, K. De Vos, T. Claes, K. Komorowska, D. Van Thourhout, and P. Bienstman, “Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet,” IEEE Photon. Tech. Lett. 23, 890–892 (2011). [CrossRef]
  12. M. S. Luchansky and R. C. Bailey, “Silicon photonic microring resonators for quantitative cytokine detection and t-cell secretion analysis,” Anal. Chem. 82, 1975–1981 (2010). [CrossRef] [PubMed]
  13. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010). [CrossRef]
  14. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. T. Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013). [CrossRef] [PubMed]
  15. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16, 1623 (2008). [CrossRef] [PubMed]
  16. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted bragg gratings in slot waveguide,” J. Biophotonics 6, 821 (2013). [CrossRef]
  17. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, “Silicon photonic resonator sensors and devices,” Proc. SPIE 8236, 823620 (2012). [CrossRef]
  18. J. Ackert, J. Doylend, D. Logan, P. Jessop, R. Vafaei, L. Chrostowski, and A. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19, 11969–11976 (2011). [CrossRef] [PubMed]
  19. T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: Sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011). [CrossRef]
  20. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE J. Photonics 1, 197–204 (2009). [CrossRef]
  21. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in soi wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010). [CrossRef] [PubMed]
  22. X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide bragg gratings and resonators,” Opt. Express 21, 19029–19039 (2013). [CrossRef] [PubMed]
  23. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Tech. Lett. 18, 2520–2522 (2006). [CrossRef]
  24. G. Veldhuis, O. Parriaux, H. Hoekstra, and P. Lambeck, “Sensitivity enhancement in evanescent optical waveguide sensors,” J. Lightwave Tech. 18, 677 (2000). [CrossRef]
  25. M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012). [CrossRef]
  26. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. and Chem. Ref. data 9, 561–658 (1980). [CrossRef]
  27. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” in “Astronomical Telescopes and Instrumentation,” (International Society for Optics and Photonics, 2006), pp. 62732J.
  28. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in “Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV,” (International Society for Optics and Photonics, 2003), pp. 393–395.
  29. G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167 (1978). [CrossRef]
  30. J. F. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” SPIE Photonics Europe pp. 9133–9139 (2014).
  31. L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” Proc. SPIE, Photonics West (2014).
  32. L. Chrostowski and M. Hochberg, Silicon Photonics DesignWiley, ISBN: 9781105948749 (2013).
  33. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013). [CrossRef]
  34. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997). [CrossRef] [PubMed]
  35. F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. and Quantum Electron. 26, 977–986 (1994). [CrossRef]
  36. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and et al., “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010). [CrossRef] [PubMed]
  37. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Tech. 24, 891 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited