OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14348–14362

Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response

Bernardo Gargallo, Pascual Muñoz, Rocío Baños, Anna Lena Giesecke, Jens Bolten, Thorsten Wahlbrink, and Herbert Kleinjans  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14348-14362 (2014)
http://dx.doi.org/10.1364/OE.22.014348


View Full Text Article

Enhanced HTML    Acrobat PDF (1548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a model for the analysis and design of a reflective Arrayed Waveguide Grating is presented. The device consists of one half of a regular AWG where each arm waveguide in the array is terminated with a phase shifter and a Sagnac loop reflector. By individually adjusting the phase shifter and Sagnac reflectivity in each arm, additional functionality to that previously reported in the literature is attained, since this enables tailoring the spectral response of the AWG. The design and experimental demonstration of Gaussian pass-band shape devices in Silicon-on-Insulator technology are reported. Methods to obtain flattened and arbitrary spectral responses are described and supported by simulation results.

© 2014 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(130.3120) Integrated optics : Integrated optics devices
(230.1950) Optical devices : Diffraction gratings
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 2, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: May 29, 2014
Published: June 4, 2014

Citation
Bernardo Gargallo, Pascual Muñoz, Rocío Baños, Anna Lena Giesecke, Jens Bolten, Thorsten Wahlbrink, and Herbert Kleinjans, "Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response," Opt. Express 22, 14348-14362 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14348


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8(6), 948–964 (1990). [CrossRef]
  2. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1, 303–305 (2007). [CrossRef]
  3. E. Pennings, G. D. Khoe, M. K. Smit, and T. Staring, “Integrated-optics versus microoptic devices for fiber-optic telecommunication systems: a comparison,” IEEE J. Sel. Top. Quantum Electon. 2(2), 151–164 (1996). [CrossRef]
  4. M. Smit and C. van Dam, “Phasar-based WDM-devices: principles, design and applications,” IEEE J. Sel. Topics Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  5. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 1041–1135 (1991). [CrossRef]
  6. C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3(10), 896–899 (1991). [CrossRef]
  7. P. Muñoz, J. D. Domenech, I. Artundo, J. H. den Besten, and J. Capmany, “Evolution of fabless generic photonic integration,” in IEEE 5th International Conference on Transparent Optical Networks (ICTON)(2013), pp. 1–3.
  8. R. J. Lycett, D. F. G. Gallagher, and V. J. Brulis, “Perfect chirped echelle grating wavelength multiplexor: design and optimization,” IEEE Photon. J. 5(2), 2400123 (2013). [CrossRef]
  9. D. Feng, W. Qian, H. Liang, C. Kung, J. Fong, B. J. Luff, and M. Asghari, “Fabrication insensitive echelle grating in Silicon-on-Insulator platform,” IEEE Photon. Technol. Lett. 23(5), 284–286 (2011).
  10. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J. B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express 21(5), 6101–6108 (2013). [CrossRef] [PubMed]
  11. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007). [CrossRef] [PubMed]
  12. L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin, “Reflective arrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett. 15(10), 1398–1400 (2003). [CrossRef]
  13. Y. Inoue, A. Himeno, K. Moriwaki, and M. Kawachi, “Silica-based arrayed-waveguide grating circuit as optical splitter/router,” Electron. Lett. 31(9), 726–727 (1995). [CrossRef]
  14. J. B. D. Soole, M. R. Amersfoort, H. P. LeBlanc, A. Rajhel, C. Caneau, C. Youtsey, and I. Adesida, “Compact polarization independent InP reflective arrayed waveguide grating filter,” Electron. Lett. 32(19), 1769–1771 (1996). [CrossRef]
  15. D. Dai, X. Fu, Y. Shi, and S. He, “Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors,” Opt. Lett. 35(15), 2594–2596 (2010). [CrossRef] [PubMed]
  16. L. G. de Peralta, A. A. Bernussi, V. Gorbounov, and H. Temkin, “Temperature insensitive reflective arrayed-waveguide grating multiplexers,” IEEE Photon. Technol. Lett. 16(3), 1041–1135 (2004).
  17. K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38(18), 3530–3533 (2013). [CrossRef] [PubMed]
  18. Y. Ikuma, M. Yasumoto, D. Miyamoto, J. Ito, T. Jiro, and H. Tsuda, “Small Helical Reflective Arrayed-Waveguide Grating with Integrated Loop Mirrors,” in Proc. European Conference on Optical Communications (ECOC), (2007).
  19. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995). [CrossRef] [PubMed]
  20. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightw. Technol. 29(4), 536–541 (2011). [CrossRef]
  21. P. Muñoz, D. Pastor, and J. Capmany, “Modeling and design of arrayed waveguide gratings,” J. Lightw. Technol. 20(4), 661–674 (2002). [CrossRef]
  22. B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” in Wiley Series in Pure and Applied Optics, B. E. A. Saleh, ed. 2nd ed, (Wiley Interscience, 2007).
  23. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightw. Technol. 14(10), 2301–2310 (1996). [CrossRef]
  24. L. B. Soldano and E. C. M Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol. 13(4), 615–627 (1995). [CrossRef]
  25. M. Bachmann, P. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994). [CrossRef] [PubMed]
  26. P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996). [CrossRef]
  27. J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightw. Technol. 19(5), 700–707 (2001). [CrossRef]
  28. S. Jeong and K. Morito, “Novel optical 90° hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI coupler,” J. Lightwave Technol. 28(9), 1323–1331 (2010). [CrossRef]
  29. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightw. Technol. 13(3), 447–455 (1995). [CrossRef]
  30. P. Muñoz, D. Pastor, J. Capmany, D. Ortega, A. Pujol, and J. R. Bonar, “AWG model validation through measurement of fabricated devices,” J. Lightw. Technol. 22(12), 2763–2777 (2004). [CrossRef]
  31. E. Kleijn, M. K. Smit, and X. Leijtens, “New analytical arrayed waveguide grating model,” J. Lightw. Technol. 31(20), 3309–3314 (2013). [CrossRef]
  32. W. Bogaerts, P. Dumon, D. van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Topics Quantum Electron. 12(6), 1394–1401 (2006). [CrossRef]
  33. G. Beelen and H. F. Bulthuis, “Arrayed waveguide grating with reduced channel passband asymmetry,” Gemfire Corporation, US Patent 7,492,991, (2007).
  34. S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38(16), 2961–2964 (2013). [CrossRef] [PubMed]
  35. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007). [CrossRef]
  36. W. Henschel, Y. M. Georgiev, and H. Kurz, “Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist,” J. Vac. Sci. Technol. B 21(5), 2018–2025 (2003). [CrossRef]
  37. M. C. Lemme, T. Mollenhauer, H. D. G. Gottlob, W. Henschel, J. Efavi, C. Welch, and H. Kurz, “Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs,” Microelec. Eng. 73, 346–350 (2004). [CrossRef]
  38. J. Bolten, T. Wahlbrink, N. Koo, H. Kurz, S. Stammberger, U. Hofmann, and N. Ünal, “Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques,” Microelec. Eng. 87, 1041 (2010). [CrossRef]
  39. A. Sakai, T. Fukazawa, and T. Baba, “Estimation of polarization crosstalk at a micro-bend in Si-Photonic wire waveguide,” J. Lightw. Technol. 22(2), 520–525 (2004). [CrossRef]
  40. E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation,” Opt. Express 20(20), 22660–22668 (2012). [CrossRef] [PubMed]
  41. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26(7), 718–721 (2014). [CrossRef]
  42. K. Okamoto and A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32(18), 1661–1662 (1996). [CrossRef]
  43. P. Muñoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001). [CrossRef] [PubMed]
  44. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photon. Technol. Lett. 18(21), 2308–2310 (2006). [CrossRef]
  45. K. Okamoto, “Fundamentals of optical waveguides,” in Optics and Photonics Series, 2nd. ed, (Academic Press, 2005).
  46. “Fourier transform pairs,” available on-line at http://www.thefouriertransform.com/pairs/fourier.php
  47. D. E. Leaird, A. M Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, “Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 14(6), 816–818 (2002). [CrossRef]
  48. J. W. Goodman, “Introduction to Fourier optics,” in Classic Textbook Reissue Series, W. Stephen, ed. (McGraw-Hill Higher Education, 1988), Chap. 5, pp. 83–90.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited