OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14382–14391

Giant all-optical tunable group velocity dispersion in an optical fiber

Yunhui Zhu, Joel A. Greenberg, Nor Ain Husein, and Daniel J. Gauthier  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14382-14391 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We realize a strongly dispersive material with large tunable group velocity dispersion (GVD) in a commercially-available photonic crystal fiber. Specifically, we pump the fiber with a two-frequency pump field that induces an absorbing resonance adjacent to an amplifying resonance via the stimulated Brillouin processes. We demonstrate all-optical control of the GVD by measuring the linear frequency chirp impressed on a 28-nanosecond-duration optical pulse by the medium and find that it is tunable over the range ± 7.8 ns2/m. The maximum observed value of the GVD is 109 times larger than that in a typical single-mode silica optical fiber. Our observations are in good agreement with a theoretical model of the process.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(260.2030) Physical optics : Dispersion
(290.5900) Scattering : Scattering, stimulated Brillouin
(130.2035) Integrated optics : Dispersion compensation devices

ToC Category:
Fiber Optics

Original Manuscript: April 14, 2014
Revised Manuscript: May 27, 2014
Manuscript Accepted: May 29, 2014
Published: June 4, 2014

Yunhui Zhu, Joel A. Greenberg, Nor Ain Husein, and Daniel J. Gauthier, "Giant all-optical tunable group velocity dispersion in an optical fiber," Opt. Express 22, 14382-14391 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. R. W. Boyd and D. J. Gauthier, “Controlling the Velocity of Light Pulses,” Science 326(5956), 1074–1077 (2009). [CrossRef] [PubMed]
  3. A. M. Weiner, Ultrafast optics (John Wiley and Sons, New Jersey, 2009).
  4. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87(6), 062322 (2013). [CrossRef]
  5. J. Nunn, L. J. Wright, C. Söller, L. I. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21(13), 15959–15973 (2013). [CrossRef] [PubMed]
  6. J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, “Coherent Ultrafast Measurement of Time-Bin Encoded Photons,” Phys. Rev. Lett. 111(15), 153602 (2013). [CrossRef] [PubMed]
  7. J. P. Yao, “A tutorial on microwave photonics - Part I,” IEEE Photon. Soc. Newsletter 26, 4–12 (2012).
  8. P. Bowlan and R. Trebino, “Complete single-shot measurement of arbitrary nanosecond laser pulses in time,” Opt. Express 19(2), 1367–1377 (2011). [CrossRef] [PubMed]
  9. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012). [CrossRef] [PubMed]
  10. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  11. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef] [PubMed]
  12. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005). [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, 2001), Chs. 1–4.
  14. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13(25), 9995–10002 (2005). [CrossRef] [PubMed]
  15. Y. Wu, L. Zhan, Y. Wang, S. Luo, and Y. Xia, “Low distortion pulse delay using SBS slow- and fast-light propagation in cascaded optical fibers,” J. Opt. Soc. Am. B 28(11), 2605–2610 (2011). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics, 3rd Ed. (Academic Press, Amsterdam, 2008), Ch. 9.
  17. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University, Cambridge, 2002), Ch. II.
  18. Y. Zhu, M. Lee, M. A. Neifeld, and D. J. Gauthier, “High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation,” Opt. Express 19(2), 687–697 (2011). [CrossRef] [PubMed]
  19. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25(1), 201–206 (2007). [CrossRef]
  20. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32(3), 217–219 (2007). [CrossRef] [PubMed]
  21. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19(9), 8285–8290 (2011). [CrossRef] [PubMed]
  22. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013). [CrossRef] [PubMed]
  23. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, and T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013). [CrossRef] [PubMed]
  24. Y. Zhu, J. Kim, and D. J. Gauthier, “Aberration-corrected quantum temporal imaging,” Phys. Rev. A 87(4), 043808 (2013). [CrossRef]
  25. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics,” Phys. Today 65(7), 29–35 (2012). [CrossRef]
  26. J. A. Greenberg and D. J. Gauthier, “Transient dynamics and momentum redistribution in cold atoms via recoil-induced resonances,” Phys. Rev. A 79(3), 033414 (2009). [CrossRef]
  27. S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026611 (2005). [CrossRef] [PubMed]
  28. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013). [CrossRef] [PubMed]
  29. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited