OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14402–14410

Field enhancement and saturation of millimeter waves inside a metallic nanogap

Junshan Lin, Sang-Hyun Oh, Hoai-Minh Nguyen, and Fernando Reitich  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14402-14410 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper investigates the millimeter electromagnetic waves passing through a metal nanogap. Based upon the study of a perfect electrical conductor model, we show that the electric field enhancement inside the gap saturates as the gap size approaches zero, and the ultimate enhancement strength is inversely proportional to the thickness of the metal film. In addition, no significant enhancement can be gained by decreasing the gap size further if the aspect ratio between the dimensions of the underlying geometric structure exceeds approximately 100.

© 2014 Optical Society of America

OCIS Codes
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Physical Optics

Original Manuscript: March 24, 2014
Revised Manuscript: May 15, 2014
Manuscript Accepted: May 16, 2014
Published: June 4, 2014

Junshan Lin, Sang-Hyun Oh, Hoai-Minh Nguyen, and Fernando Reitich, "Field enhancement and saturation of millimeter waves inside a metallic nanogap," Opt. Express 22, 14402-14410 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. J. Bravo-Abad, L. Martin-Moreno, and F. J. Garcia-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004). [CrossRef]
  3. X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electro-magnetic waves,” Nat. Commnun. 4, 2361 (2013).
  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  5. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  6. R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75, 193401 (2007). [CrossRef]
  7. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99, 137401 (2007). [CrossRef] [PubMed]
  8. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  9. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156, (2009). [CrossRef]
  10. B. Sturman, E. Podivilov, and M. Gorkunov, “Transmission and diffraction properties of a narrow slit in a perfect metal,” Phys. Rev. B 82, 115419 (2010). [CrossRef]
  11. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 99, 5601–5603 (2001). [CrossRef]
  12. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106–6121 (2004). [CrossRef] [PubMed]
  13. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002). [CrossRef] [PubMed]
  14. C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernndez-Domnguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072 (2012). [CrossRef] [PubMed]
  15. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009). [CrossRef] [PubMed]
  16. A. Sommerfeld, Partial Differential Equations in Physics (Academic Press, New York1949).
  17. C. A. Brebbia, Boundary Element Methods in Engineering (Springer, New York1982). [CrossRef]
  18. J. Lin, H-M. Nguyen, and F. Reitich, “Electromagnetic field enhancement in small gaps: a rigorous mathematical theory,” preprint. http://www.auburn.edu/~jzl0097/publications.htm .
  19. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited