OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14441–14449

Hybrid MOS-PN photodiode with positive feedback for pulse-modulation imaging

Denis Sallin, Adil Koukab, and Maher Kayal  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14441-14449 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of CMOS compatible photodetector, exhibiting intrinsic light-to-time conversion, is proposed. Its main objective is to start the time-to-digital conversion directly at its output, thereby avoiding the cumbersome analog processing. The operation starts with an internal charge integration, followed by a positive feedback, and a sharp switching-current. The device, consisting of a deeply depleted MOS structure controlling the conduction of a forward-based PN diode, is presented and its operation explained. TCAD simulations are used to show the effects of semiconductor parameters and bias conditions. The photodetector and its detection circuit are designed and fabricated in a 0.18µm CMOS process. Measurements of this new device under different biasing and illumination conditions show highly promising properties in terms of linearity, internal gain, and noise performances.

© 2014 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(040.6070) Detectors : Solid state detectors

ToC Category:
Imaging Systems

Original Manuscript: March 17, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 28, 2014
Published: June 5, 2014

Denis Sallin, Adil Koukab, and Maher Kayal, "Hybrid MOS-PN photodiode with positive feedback for pulse-modulation imaging," Opt. Express 22, 14441-14449 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  2. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  3. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13(25), 10102–10108 (2005). [CrossRef] [PubMed]
  4. L. Harik, J. M. Sallese, and M. Kayal, “Transient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” Solid-State Electron. 52(5), 597–605 (2008). [CrossRef]
  5. L. Harik, J. M. Sallese, and M. Kayal, “SOI Pixel Based on a Floating Body Partially Depleted MOSFET in a Delta-Sigma LoopTransient charge pumping as an efficient technique to measure low light intensity with PD SOI MOSFET,” IEEE Sens. J. 9(8), 994–1001 (2009). [CrossRef]
  6. D. G. Chen, D. Matolin, A. Bermak, and C. Posch, “Pulse-Modulation Imaging-Review and Performance Analysis,” IEEE Trans. Biomed. Circuits Sys. 5(1), 64–82 (2011). [CrossRef] [PubMed]
  7. B. Nakhkoob, S. Ray, and M. M. Hella, “High speed photodiodes in standard nanometer scale CMOS technology: a comparative study,” Opt. Express 20(10), 11256–11270 (2012). [CrossRef] [PubMed]
  8. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16(25), 20457–20470 (2008). [CrossRef] [PubMed]
  9. D. Matolin, C. Posch, and R. Wohlgenannt, “True Correlated Double Sampling and Comparator Design for Time-Based Image sensors,” IEEE International Symposium of Circuits and Systems. ISCAS, 1269–1272 (2009). [CrossRef]
  10. J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI). Sys. 4, 322–335 (1996).
  11. A. Spivak, A. Belenky, A. Fish, and O. Yadid-Pecht, “Wide-dynamic-range cmos image sensors: Comparative performance analysis,” IEEE Trans. Electron. Dev. 56(11), 2446–2461 (2009). [CrossRef]
  12. T.-H. Tsai and R. Hornsey, “Analysis of Dynamic Range, Linearity, and Noise of a Pulse-Frequency Modulation Pixel,” IEEE Trans. Electron. Dev. 59(10), 2675–2681 (2012). [CrossRef]
  13. X. Wang, W. Wong, and R. Hornsey, “A High Dynamic Range CMOS Image Sensor With Inpixel Light-to-Frequency Conversion,” IEEE Trans. Electron. Dev. 53(12), 2988–2992 (2006). [CrossRef]
  14. A. Kitchen, A. Bermak, and A. Bouzerdoum, “A Digital Pixel Sensor Array With Programmable Dynamic Range,” IEEE Trans. Electron. Dev. 52(12), 2591–2601 (2005). [CrossRef]
  15. H. Eltoukhy, K. Salama, and A. ElGamal, “A 0.18-µm CMOS bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41(3), 651–662 (2006). [CrossRef]
  16. D. Ho, M. O. Noor, U. J. Krull, and G. Gulak, “CMOS Tunable-Color Image Sensor With Dual-ADC Shot-Noise-Aware Dynamic Range Extension,” IEEE Trans. Circuits Syst. I. 60, 2116–2129 (2013).
  17. S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS,” IEEE J. Solid-State Circuits 45(12), 2874–2881 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited