OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14524–14529

Novel sensing concept based on optical Tamm plasmon

Wei Li Zhang, Fen Wang, Yun Jiang Rao, and Yao Jiang  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14524-14529 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper proposes a novel concept of refractive index sensing taking advantage of a high-refractive-index-contrast optical Tamm plasmon (OTP) structure, i.e., an air/dielectric alternate-layered distributed Bragg reflector (DBR) coated with metal. In the reflection spectrum of the structure, a dip related to the formation of OTP appears. The wavelength and reflectivity of this dip are sensitive to variation of ambient refractive index, which provides a potential way to realize refractive index sensing with a large measuring range and high sensitivity.

© 2014 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: March 31, 2014
Manuscript Accepted: May 18, 2014
Published: June 5, 2014

Wei Li Zhang, Fen Wang, Yun Jiang Rao, and Yao Jiang, "Novel sensing concept based on optical Tamm plasmon," Opt. Express 22, 14524-14529 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72(23), 233102 (2005). [CrossRef]
  2. M. E. Sasin, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: First experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. C. Symonds, A. Lemaître, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009). [CrossRef]
  5. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013). [CrossRef]
  6. Y. K. Gong, X. M. Liu, H. Lu, L. R. Wang, and G. X. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011). [CrossRef] [PubMed]
  7. H. C. Zhou, G. Yang, K. Wang, H. Long, and P. X. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett. 35(24), 4112–4114 (2010). [CrossRef] [PubMed]
  8. W. L. Zhang and S. F. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun. 283(12), 2622–2626 (2010). [CrossRef]
  9. W. L. Zhang, Y. Jiang, Y. Y. Zhu, F. Wang, and Y. J. Rao, “All-optical bistable logic control based on coupled Tamm plasmons,” Opt. Lett. 38(20), 4092–4095 (2013). [CrossRef] [PubMed]
  10. C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra, G. E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012). [CrossRef]
  11. C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013). [CrossRef] [PubMed]
  12. X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm state enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012). [CrossRef]
  13. C. H. Xue, H. T. Jiang, H. Lu, G. Q. Du, and H. Chen, “Efficient third-harmonic generation based on Tamm plasmon polaritons,” Opt. Lett. 38(6), 959–961 (2013). [CrossRef] [PubMed]
  14. K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013). [CrossRef] [PubMed]
  15. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  16. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  17. Y. Chen and H. Ming, “Review of surface Plasmon resonance and localized surface Plasmon resonance sensor,” Photon. Sensors 2(1), 37–49 (2012). [CrossRef]
  18. C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. E. Beere, D. A. Ritchie, and J. J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm Plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011). [CrossRef]
  19. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” presented at the 23rd Optical Fiber Sensors Conference (OFS), Santander, Spain, 2–6 June, 2014.
  20. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited