OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14559–14567

Pump frequency noise coupling into a microcavity by thermo-optic locking

Jiang Li, Scott Diddams, and Kerry J. Vahala  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14559-14567 (2014)
http://dx.doi.org/10.1364/OE.22.014559


View Full Text Article

Enhanced HTML    Acrobat PDF (6831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As thermo-optic locking is widely used to establish a stable frequency detuning between an external laser and a high Q microcavity, it is important to understand how this method affects microcavity temperature and frequency fluctuations. A theoretical analysis of the laser-microcavity frequency fluctuations is presented and used to find the spectral dependence of the suppression of laser-microcavity, relative frequency noise caused by thermo-optic locking. The response function is that of a high-pass filter with a bandwidth and low-frequency suppression that increase with input power. The results are verified using an external-cavity diode laser and a silica disk resonator. The locking of relative frequency fluctuations causes temperature fluctuations within the microcavity that transfer pump frequency noise onto the microcavity modes over the thermal locking bandwidth. This transfer is verified experimentally. These results are important to investigations of noise properties in many nonlinear microcavity experiments in which low-frequency, optical-pump frequency noise must be considered.

© 2014 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.6810) Lasers and laser optics : Thermal effects
(140.3325) Lasers and laser optics : Laser coupling
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 10, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: May 30, 2014
Published: June 5, 2014

Citation
Jiang Li, Scott Diddams, and Kerry J. Vahala, "Pump frequency noise coupling into a microcavity by thermo-optic locking," Opt. Express 22, 14559-14567 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  2. A. B. Matkso, V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron. 12, 3–14 (2006). [CrossRef]
  3. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef] [PubMed]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]
  5. H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012). [CrossRef]
  6. V. S. Ilchenko, M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004 (1992).
  7. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22, 459–465 (2005). [CrossRef]
  8. T. Carmon, L. Yang, K. J. Vahala, ”Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004). [CrossRef] [PubMed]
  9. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity,” Phys. Rev. Lett. 95, 033901 (2005). [CrossRef] [PubMed]
  10. T. J. Kippenberg, K. J. Vahala, “Cavity Optomechanics: Back-Action at the Mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]
  11. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram-and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef] [PubMed]
  12. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009). [CrossRef] [PubMed]
  13. P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
  14. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 322, 555–559 (2011). [CrossRef]
  15. J. Li, H. Lee, T. Chen, K. J. Vahala, “Low-Pump-Power, Low-Phase-Noise, and Microwave to Millimeter-Wave Repetition Rate Operation in Microcombs,” Phys. Rev. Lett. 109, 233901 (2012). [CrossRef]
  16. S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartzmicroresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011). [CrossRef]
  17. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014). [CrossRef]
  18. J. Li, H. Lee, T. Chen, K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012). [CrossRef] [PubMed]
  19. J. Li, H. Lee, K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013). [PubMed]
  20. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited