OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14696–14704

Periodic nanostructures on titanium dioxide film produced using femtosecond laser with wavelengths of 388 nm and 775 nm

Togo Shinonaga, Masahiro Tsukamoto, and Godai Miyaji  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14696-14704 (2014)
http://dx.doi.org/10.1364/OE.22.014696


View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Titanium dioxide (TiO2) film is an important biomaterial used to improve the biocompatibility of titanium (Ti). We have used a film coating method with an aerosol beam and femtosecond laser irradiation to form periodic structures on biomaterials for control of the cell spreading. The control of cell spreading on biomaterials is important for the development of advanced biomaterials. In this study, nanostructures with periods of 130 and 230 nm were formed on a film using a femtosecond laser with wavelengths of 388 and 775 nm, respectively. The nanostructure period on the film was 30% of the laser wavelengths. Periods produced with wavelengths of 388 and 775 nm were calculated using a surface plasmon polariton (SPP) model and the experimental results for both wavelengths were in the range of the calculated periods, which suggests that the mechanism for the formation of the periodic nanostructures on the film with a femtosecond laser was due to the excitation of SPPs.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.1435) Materials : Biomaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Laser Microfabrication

History
Original Manuscript: April 22, 2014
Revised Manuscript: May 29, 2014
Manuscript Accepted: May 29, 2014
Published: June 6, 2014

Citation
Togo Shinonaga, Masahiro Tsukamoto, and Godai Miyaji, "Periodic nanostructures on titanium dioxide film produced using femtosecond laser with wavelengths of 388 nm and 775 nm," Opt. Express 22, 14696-14704 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Hanawa, “Biofunctionalization of titanium for dental implant,” Jpn. Dent. Sci. Rev. 46(2), 93–101 (2010). [CrossRef]
  2. L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo, and J. Y. Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials 25(14), 2867–2875 (2004). [CrossRef] [PubMed]
  3. X. Liu, P. K. Chub, and C. Ding, “Surface modification of titanium, titanium alloy sand related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004). [CrossRef]
  4. Y. Tsutsumi, M. Niinomi, M. Nakai, H. Tsutsumi, H. Doi, N. Nomura, and T. Hanawa, “Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy,” Appl. Surf. Sci. 262, 34–38 (2012). [CrossRef]
  5. J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, “Jet molding system for realization of three-dimensional micro-structures,” Sens. Actuators A Phys. 69(1), 106–112 (1998). [CrossRef]
  6. M. Tsukamoto, T. Fujihara, N. Abe, S. Miyake, M. Katto, T. Nakayama, and J. Akedo, “Hydroxyapatite coating on titanium plate with an ultrafine particle beam,” Jpn. J. Appl. Phys. 42(2A), L120–L122 (2003). [CrossRef]
  7. J. Lu, M. P. Rao, N. C. MacDonald, D. Khang, and T. J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomater. 4(1), 192–201 (2008). [CrossRef] [PubMed]
  8. A. Matsugaki, G. Aramoto, and T. Nakano, “The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion,” Biomaterials 33(30), 7327–7335 (2012). [CrossRef] [PubMed]
  9. S. Fujita, M. Ohshima, and H. Iwata, “Time-lapse observation of cell alignment on nanogrooved patterns,” J. R. Soc. Interface 6(Suppl 3), S269–S277 (2009). [CrossRef] [PubMed]
  10. K. Matsuzaka, X. F. Walboomers, J. E. de Ruijter, and J. A. Jansen, “The effect of poly-L-lactic acid with parallel surface micro groove on osteoblast-like cells in vitro,” Biomaterials 20(14), 1293–1301 (1999). [CrossRef] [PubMed]
  11. M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita, “Periodic microstructures produced by femtosecond laser irradiation on titanium plate,” Vacuum 80(11–12), 1346–1350 (2006). [CrossRef]
  12. M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, and N. Abe, “Microstructures formation on titanium plate by femtosecond laser ablation,” J. Phys. Conf. Ser. 59, 666–669 (2007). [CrossRef]
  13. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010). [CrossRef]
  14. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009). [CrossRef]
  15. S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond laser induced quasiperiodic nanostructures on TiO2 surfaces,” J. Appl. Phys. 105(8), 084912 (2009). [CrossRef]
  16. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC,” Appl. Phys. A Mater.Sci. Proc. 76, 983–985 (2003).
  17. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009). [CrossRef]
  18. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  19. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012). [CrossRef] [PubMed]
  20. K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013). [CrossRef]
  21. T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014). [CrossRef]
  22. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002). [CrossRef]
  23. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011). [CrossRef] [PubMed]
  24. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010). [CrossRef] [PubMed]
  25. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  26. F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21(13), 15259–15267 (2013). [CrossRef] [PubMed]
  27. M. Tsukamoto, N. Abe, Y. Soga, M. Yoshida, H. Nakano, M. Fujita, and J. Akedo, “Control of electrical resistance of TiO2films by short-pulse laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 93, 193–196 (2008).
  28. M. Tsukamoto, T. Shinonaga, M. Takahashi, M. Fujita, and N. Abe, “Photoconductive properties of titanium dioxide film modified by femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Proc. 110, 679–682 (2013).
  29. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61(4), 2643–2650 (2000). [CrossRef]
  30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  32. B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” J. Phys. Chem. 100(3), 1027–1035 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited