OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14705–14711

Visual micro-thermometers for nanoparticles photo-thermal conversion

Gia Petriashvili, Maria P. De Santo, Ketevan Chubinidze, Ridha Hamdi, and Riccardo Barberi  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14705-14711 (2014)
http://dx.doi.org/10.1364/OE.22.014705


View Full Text Article

Enhanced HTML    Acrobat PDF (1438 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to calibrate the light to heat conversion in an aqueous fluid containing nanoparticles. Accurate control of light and heat is of dramatic importance in many fields of science and metal nanoparticles have acquired an increased importance as means to address heat in very small areas when irradiated with an intense light. The proposed method enables to measure the temperature in the environment surrounding nanoparticles, as a function of the exposure time to laser radiation, exploiting the properties of thermochromic cholesteric liquid crystals. This method overcomes the problems of miscibility of nanoparticles in liquid crystals, provides temperature reading at the microscale, since the cholesteric liquid crystal is confined in microdroplets, and it is sensitive to a temperature variation, 28°C-49°C, suitable for biological applications.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(160.4236) Materials : Nanomaterials
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Optical Devices

History
Original Manuscript: February 4, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 15, 2014
Published: June 9, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics
June 15, 2014 Spotlight on Optics

Citation
Gia Petriashvili, Maria P. De Santo, Ketevan Chubinidze, Ridha Hamdi, and Riccardo Barberi, "Visual micro-thermometers for nanoparticles photo-thermal conversion," Opt. Express 22, 14705-14711 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Ross, M. Gaitan, L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001). [CrossRef] [PubMed]
  2. G. L. Liu, J. Kim, Y. U. Lu, L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5(1), 27–32 (2006). [CrossRef] [PubMed]
  3. H. M. Pollock, A. Hammiche, “Micro-thermal analysis: techniques and applications,” J. Phys. D Appl. Phys. 34(9), R23–R53 (2001). [CrossRef]
  4. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  5. W. Zhao, J. M. Karp, “Tumour targeting: nanoantennas heat up,” Nat. Mater. 8(6), 453–454 (2009). [CrossRef] [PubMed]
  6. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5(7), 1371–1377 (2005). [CrossRef] [PubMed]
  7. D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006). [CrossRef] [PubMed]
  8. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006). [CrossRef]
  9. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006). [CrossRef] [PubMed]
  10. G. Baffou, M. P. Kreuzer, F. Kulzer, R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17(5), 3291–3298 (2009). [CrossRef] [PubMed]
  11. L. Wang, B. Li, “Thermal memory: a storage of phononic information,” Phys. Rev. Lett. 101(26), 267203 (2008). [CrossRef] [PubMed]
  12. N. Yang, G. Zhang, B. Li, “Carbon nanocone: a promising thermal rectifier,” Appl. Phys. Lett. 93(24), 243111 (2008). [CrossRef]
  13. L. Cao, D. N. Barsic, A. R. Guichard, M. L. Brongersma, “Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes,” Nano Lett. 7(11), 3523–3527 (2007). [CrossRef] [PubMed]
  14. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano 7(1), 42–49 (2013). [CrossRef] [PubMed]
  15. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012). [CrossRef]
  16. A. O. Govorov, H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007). [CrossRef]
  17. G. Baffou, R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7(2), 171–187 (2013). [CrossRef]
  18. W. Haeberle, M. Pantea, J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8–9), 678–686 (2006). [CrossRef] [PubMed]
  19. J. Lee, A. O. Govorov, N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. Int. Ed. Engl. 44(45), 7439–7442 (2005). [CrossRef] [PubMed]
  20. C. Gota, K. Okabe, T. Funatsu, Y. Harada, S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009). [CrossRef] [PubMed]
  21. G. M. Zharkova, V. M. Khachaturyan, L. A. Vostokov, and M. M. Alekseev, “Study of liquid thermoindicators” in Advances in Liquid Crystal Research and Applications (Pergamon, 1980), Vol. 2, pp. 1221–1239.
  22. G. Petriashvili, K. Japaridze, L. Devadze, C. Zurabishvili, N. Sepashvili, N. Ponjavidze, M. P. De Santo, M. A. Matranga, R. Hamdi, F. Ciuchi, R. Barberi, “Paper like cholesteric interferential mirror,” Opt. Express 21(18), 20821–20830 (2013). [CrossRef] [PubMed]
  23. G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009). [CrossRef] [PubMed]
  24. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. 453(1), 123–140 (2006). [CrossRef]
  25. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, 1974).
  26. J. E. Adams, W. Haas, J. Wysocki, “Optical properties of certain cholesteric liquid crystal films,” J. Chem. Phys. 50(6), 2458–2464 (1969). [CrossRef]
  27. J. L. Fergason, “Cholesteric structure - 1 optical properties,” Mol. Cryst. 1(2), 293–307 (1966). [CrossRef]
  28. M. Parsley, Handbook of Thermochromic Liquid Crystal Technology (Hallcrest, 1991).
  29. J. Milette, V. Toader, L. Reven, R. B. Lennox, “Tuning the miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP reaction,” J. Mater. Chem. 21(25), 9043–9050 (2011). [CrossRef]
  30. H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, T. Hegmann, “Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts,” ChemPhysChem 10(8), 1211–1218 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited