OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14738–14749

Generation of nonparaxial accelerating fields through mirrors. II: Three dimensions

Miguel A. Alonso and Miguel A. Bandres  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14738-14749 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accelerating beams are wave packets that preserve their shape while propagating along curved trajectories. In this article, we extend the ray-based treatment in Part I of this series to nonparaxial accelerating fields in three dimensions, whose intensity maxima trace circular or helical paths. We also describe a simple procedure for finding mirror shapes that convert collimated beams into fields whose intensity features trace arcs that can extend well beyond 180 degrees.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(350.5500) Other areas of optics : Propagation
(070.3185) Fourier optics and signal processing : Invariant optical fields
(080.4035) Geometric optics : Mirror system design
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Diffraction and Gratings

Original Manuscript: March 31, 2014
Manuscript Accepted: April 28, 2014
Published: June 9, 2014

Miguel A. Alonso and Miguel A. Bandres, "Generation of nonparaxial accelerating fields through mirrors. II: Three dimensions," Opt. Express 22, 14738-14749 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Alonso and M. A. Bandres, “Generation of nonparaxial accelerating fields through mirrors. I: Two dimensions,” Opt. Express 22, 7124–7132 (2014). [CrossRef] [PubMed]
  2. M. P. Do-Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, 1976), pp. 16–22.
  3. C. Patterson and R. Smith, “Helicon waves: propagation-invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996). [CrossRef]
  4. R. Piestun and J. Shamir, “Generalized propagation-invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998). [CrossRef]
  5. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16, 3484–3489 (2008). [CrossRef] [PubMed]
  6. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. 106, 2995–2999 (2009). [CrossRef] [PubMed]
  7. V. R. Daria, D. Z. Palima, and J. Glückstad, “Optical twists in phase and amplitude,” Opt. Express 19, 476–481 (2012). [CrossRef]
  8. D. B. Ruffner and D. G. Grier, “Optical conveyors: A class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012). [CrossRef] [PubMed]
  9. M. A. Alonso and M. A. Bandres, “Spherical fields as nonparaxial accelerating waves,” Opt. Lett. 37, 5175–5177 (2012). [CrossRef] [PubMed]
  10. M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21, 13917–13929 (2013). [CrossRef] [PubMed]
  11. P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012). [CrossRef] [PubMed]
  12. A. Mathis, F. Courvoisier, R. Giust, L. Furfaro, M. Jacquot, L. Froehly, and J. M. Dudley, “Arbitrary nonparaxial accelerating periodic beams and spherical shaping of light,” Opt. Lett. 38, 2218–2220 (2013). [CrossRef] [PubMed]
  13. I. D. Chremmos and N. K. Efremidis, “Nonparaxial accelerating Bessel-like beams,” Phys. Rev. A 88, 063816 (2013). [CrossRef]
  14. S. Vo, K. Fuerschbach, K. P. Thompson, M. A. Alonso, and J. P. Rolland, “Airy beams: a geometric optics perspective,” J. Opt. Soc. Am. A 27, 2574–2582 (2010). [CrossRef]
  15. Y. Kaganovsky and E. Heyman, “Nonparaxial wave analysis of three-dimensional Airy beams,” J. Opt. Soc. Am. A 29, 671–688 (2012). [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999), 7, pp. 484–498.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited