OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14792–14802

Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining

Jiangxin Song, Jintian Lin, Jialei Tang, Yang Liao, Fei He, Zhaohui Wang, Lingling Qiao, Koji Sugioka, and Ya Cheng  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14792-14802 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 106 measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 105 as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10−4 refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: April 22, 2014
Manuscript Accepted: June 3, 2014
Published: June 9, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Jiangxin Song, Jintian Lin, Jialei Tang, Yang Liao, Fei He, Zhaohui Wang, Lingling Qiao, Koji Sugioka, and Ya Cheng, "Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining," Opt. Express 22, 14792-14802 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014). [CrossRef]
  2. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev 5(3), 442–463 (2011). [CrossRef]
  3. M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, and K. Midorikawa, “3-D microstructuring inside photosensitive glass by femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 76(5), 857–860 (2003). [CrossRef]
  4. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001). [CrossRef] [PubMed]
  5. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004). [CrossRef] [PubMed]
  6. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006). [CrossRef]
  7. Z. Wang, K. Sugioka, and K. Midorikawa, “Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 89(4), 951–955 (2007). [CrossRef]
  8. F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, “Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining,” Appl. Phys. Lett. 96(4), 041108 (2010). [CrossRef]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  10. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005). [CrossRef] [PubMed]
  11. A. Crespi, Y. Gu, B. Ngamsom, H. J. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010). [CrossRef] [PubMed]
  12. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip 9(2), 311–318 (2009). [CrossRef] [PubMed]
  13. A. Schaap, T. Rohrlack, and Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12(8), 1527–1532 (2012). [CrossRef] [PubMed]
  14. Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip 11(12), 2109–2115 (2011). [CrossRef] [PubMed]
  15. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Perot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006). [CrossRef]
  16. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002). [CrossRef]
  17. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  18. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008). [CrossRef] [PubMed]
  19. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010). [CrossRef]
  20. J. M. Ward, P. Féron, and S. Nic Chormaic, “A taper-fused microspherical laser source,” IEEE Photon. Technol. Lett. 20(6), 392–394 (2008). [CrossRef]
  21. F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012). [CrossRef]
  22. J. Lin, S. Yu, Y. Ma, W. Fang, F. He, L. Qiao, L. Tong, Y. Cheng, and Z. Xu, “On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing,” Opt. Express 20(9), 10212–10217 (2012). [CrossRef] [PubMed]
  23. J. Lin, Y. Xu, J. Song, B. Zeng, F. He, H. Xu, K. Sugioka, W. Fang, and Y. Cheng, “Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining,” Opt. Lett. 38(9), 1458–1460 (2013). [CrossRef] [PubMed]
  24. J. Song, J. Lin, J. Tang, L. Qiao, and Y. Cheng, “Integration of an optical fiber taper with an optical microresonator fabricated in glass by femtosecond laser 3D micromachining,” arXiv:1402.1356v1 [physics.optics].
  25. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973). [CrossRef] [PubMed]
  26. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005). [CrossRef]
  27. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited