OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14819–14829

Dominant mode control of a graphene-embedded hybrid plasmonic resonator for a tunable nanolaser

Chang Yeong Jeong and Sangin Kim  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14819-14829 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A graphene-embedded tunable plasmonic nanodisk resonator operating at near-infrared wavelength range is proposed, in which a certain resonant mode among multiple whispering-gallery modes (WGMs) can be selected as a dominant mode by modulating the Fermi level of the graphene. Our theoretical investigation reveals that the dominant mode selection mechanism in the proposed resonator is governed by the figure-of-merit (FOM) of the one-dimensional (1D) waveguide of the resonator’s vertical structure, which is defined as a propagation length to mode size ratio. As the conductivity of the graphene changes with a gating voltage, the wavelength dependence of the FOM changes and a WGM closest to the maximum FOM wavelength is selected. Partial tuning of the selected dominant mode is incurred by the change of the effective index of the 1D waveguide. This novel mode selection mechanism of the proposed resonator can be adopted to realize an optically pumped tunable nanolaser with a wide wavelength tuning range.

© 2014 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:

Original Manuscript: May 7, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 5, 2014
Published: June 9, 2014

Chang Yeong Jeong and Sangin Kim, "Dominant mode control of a graphene-embedded hybrid plasmonic resonator for a tunable nanolaser," Opt. Express 22, 14819-14829 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Buus and E. J. Murphy, “Tunable lasers in optical networks,” J. Lightwave Technol. 24(1), 5–11 (2006). [CrossRef]
  2. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005). [CrossRef]
  3. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007). [CrossRef] [PubMed]
  4. B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Frob, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008). [CrossRef]
  5. S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B 97(4), 787–791 (2009). [CrossRef]
  6. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009). [CrossRef] [PubMed]
  7. S. Schilt, K. Zogal, B. Kogel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010). [CrossRef]
  8. J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Perot filter,” IEEE J. Quantum Electron. 46(9), 1313–1319 (2010). [CrossRef]
  9. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng. 17(1), R1–R13 (2007). [CrossRef]
  10. N. Wang, M. Feng, Z. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photon. Technol. Lett. 24(18), 1591–1593 (2012). [CrossRef]
  11. C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13(1), 248–252 (2013). [CrossRef] [PubMed]
  12. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008). [CrossRef] [PubMed]
  13. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008). [CrossRef]
  14. N. K. Emani, T.-F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable Damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012). [CrossRef] [PubMed]
  15. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13(2), 515–518 (2013). [CrossRef] [PubMed]
  16. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013). [CrossRef] [PubMed]
  17. P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012). [CrossRef] [PubMed]
  18. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef] [PubMed]
  19. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012). [CrossRef] [PubMed]
  20. F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schönenberger, J. W. Choi, H. G. Park, M. Beck, and J. Faist, “Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial,” Nano Lett. 13(7), 3193–3198 (2013). [CrossRef] [PubMed]
  21. W. Zhu, I. D. Rukhlenko, L.-M. Si, and M. Premaratne, “Graphene-enabled tunability of optical fishnet metamaterial,” Appl. Phys. Lett. 102(12), 121911 (2013). [CrossRef]
  22. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013). [CrossRef]
  23. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  24. K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, “A role for graphene in silicon-based semiconductor devices,” Nature 479(7373), 338–344 (2011). [CrossRef] [PubMed]
  25. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012). [CrossRef] [PubMed]
  26. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490–1496 (2012). [CrossRef]
  27. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  28. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012). [CrossRef] [PubMed]
  29. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012). [CrossRef] [PubMed]
  30. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405 (2012). [CrossRef]
  31. P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, “Tunable terahertz optical antennas based on graphene ring structures,” Appl. Phys. Lett. 100(15), 153111 (2012). [CrossRef]
  32. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, and F. Wang, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012). [CrossRef] [PubMed]
  33. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef] [PubMed]
  34. C. Y. Jeong, M. Kim, and S. Kim, “Metal nanodisk hybrid plasmonic resonator on dielectric substrate for relieved fabrication complexity,” Opt. Express 22(5), 5772–5780 (2014). [CrossRef] [PubMed]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  36. S.-H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express 20(22), 24918–24924 (2012). [CrossRef] [PubMed]
  37. C. Hwang, D. A. Siegel, S.-K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, “Fermi velocity engineering in graphene by substrate modification,” Sci Rep. 2, 590 (2012). [CrossRef]
  38. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  39. S.-W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34(1), 91–93 (2009). [CrossRef] [PubMed]
  40. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  41. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  42. J. F. Verweji and J. H. Klootwijk, “Dielectric breakdown I: A review of oxide breakdown,” Microelectron. J. 27(7), 611–622 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited