OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14896–14903

Ho:YAG single crystal fiber: fabrication and optical characterization

Yuan Li, Eric G. Johnson, Craig D. Nie, James A. Harrington, and Ramesh Shori  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 14896-14903 (2014)
http://dx.doi.org/10.1364/OE.22.014896


View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

0.5% Holmium (Ho) doped YAG single crystal fiber (SCF) was fabricated using Laser Heated Pedestal Growth (LHPG) method and characterized for its optical absorption and emission properties involving transitions between the 5I8 and 5I7 energy levels. The results verified the absorption peaks suitable for in-band direct pumping at 1908 nm and 1932 nm with the emission occurring between 2050 and 2150 nm. Small signal gain measurements were also performed for demonstrating the fiber like characteristics of the SCF.

© 2014 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Fiber Optics

History
Original Manuscript: April 11, 2014
Revised Manuscript: June 3, 2014
Manuscript Accepted: June 4, 2014
Published: June 10, 2014

Citation
Yuan Li, Eric G. Johnson, Craig D. Nie, James A. Harrington, and Ramesh Shori, "Ho:YAG single crystal fiber: fabrication and optical characterization," Opt. Express 22, 14896-14903 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-14896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37(14), 2898–2900 (2012). [CrossRef] [PubMed]
  2. N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “High efficiency, resonantly diode pumped, double-clad, Er:YAG-core, waveguide laser,” Opt. Express 20(23), 25554–25561 (2012). [CrossRef] [PubMed]
  3. X. Délen, I. Martial, J. Didierjean, N. Aubry, D. Sangla, F. Balembois, and P. Georges, “34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm,” Appl. Phys. B 104(1), 1–4 (2011). [CrossRef]
  4. P. C. Shi, I. A. Watson, and J. H. Sharp, “High-concentration Er:YAG single-crystal fibers grown by laser-heated pedestal growth technique,” Opt. Lett. 36(12), 2182–2184 (2011). [CrossRef] [PubMed]
  5. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, “Yb:YAG single crystal fiber power amplifier for femtosecond sources,” Opt. Lett. 38(2), 109–111 (2013). [CrossRef] [PubMed]
  6. W. X. Zhang, J. Zhou, W. B. Liu, J. Li, L. Wang, B. X. Jiang, Y. B. Pan, X. J. Cheng, and J. Q. Xu, “Fabrication, properties and laser performance of Ho:YAG transparent ceramic,” J. Alloy. Comp. 506(2), 745–748 (2010). [CrossRef]
  7. J. S. Haggerty, W. P. Menashi, and J. F. Wenekkus, “Method for forming refractory fibers by laser energy,” US Patent 3944640 (1976).
  8. D. H. Jundt, M. M. Fejer, and R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55(21), 2170–2172 (1989). [CrossRef]
  9. R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79(1-3), 669–680 (1986). [CrossRef]
  10. R. S. F. Chang, S. Sengupta, L. B. Shaw, and N. Djeu, “Fabrication of laser materials by laser-heated pedestal growth,” Proc. SPIE 1410, 125–132 (1991). [CrossRef]
  11. R. K. Nubling and J. A. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36(24), 5934–5940 (1997). [CrossRef] [PubMed]
  12. http://www.crystran.co.uk/
  13. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express 16(16), 12264–12271 (2008). [CrossRef] [PubMed]
  14. M. J. F. Digonnet, C. J. Gaeta, D. O’Meara, and H. J. Shaw, “Clad Nd:YAG fibers for laser applications,” J. Lightwave Technol. 5(5), 642–646 (1987). [CrossRef]
  15. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992). [CrossRef]
  16. G. A. Kumar, M. Pokhrel, D. K. Sardar, P. Samuel, K. I. Ueda, T. Yanagitani, and H. Yagi, “2.1 μm emission spectral properties of Tm and Ho doped transparent YAG ceramic,” Sci. Adv. Mater. 4(5), 617–622 (2012). [CrossRef]
  17. D. C. Brown, V. Envid, and J. Zembek, “Ho:YAG absorption cross sections from 1700 to 2200 nm at 83, 175, and 295 K,” Appl. Opt. 51(34), 8147–8158 (2012). [CrossRef] [PubMed]
  18. Q. Dong, G. Zhao, J. Chen, Y. Ding, and C. Zhao, “Growth and anisotropic thermal properties of biaxial Ho:YAlO3 crystal,” J. Appl. Phys. 108(2), 023108 (2010). [CrossRef]
  19. B. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009). [CrossRef]
  20. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B 106(2), 315–319 (2012). [CrossRef]
  21. M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38(11), 1455–1464 (2002). [CrossRef]
  22. M. Digonnet, “Theory of superfluorescent fiber lasers,” J. Lightwave Technol. 4(11), 1631–1639 (1986). [CrossRef]
  23. J. Kwiatkowski, J. Jabczynski, L. Gorajek, W. Zendzian, H. Jelinkova, J. Sulc, M. Nemec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6(7), 531–534 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited