OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 14929–14943

Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one

Vicente Mico, Carlos Ferreira, Zeev Zalevsky, and Javier García  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 14929-14943 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3550 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an extremely simple, low cost and highly stable way to convert a standard microscope into a holographic one. The proposed architecture is based on a common-path interferometric layout where the input plane is spatially-multiplexed to allow reference beam transmission in a common light-path with the imaging branch. As consequence, the field of view provided by the layout is reduced. The use of coherent illumination (instead of the broadband one included in the microscope) and a properly placed one-dimensional diffraction grating (needed for the holographic recording) complete the experimental layout. The proposed update is experimentally validated in a regular Olympus BX-60 upright microscope showing calibration (USAF resolution test) as well as biological (red blood cells and sperm cells) images for different microscope objectives.

© 2014 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.0180) Imaging systems : Microscopy
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: April 30, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 5, 2014
Published: June 10, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Vicente Mico, Carlos Ferreira, Zeev Zalevsky, and Javier García, "Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one," Opt. Express 22, 14929-14943 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  2. G. L. Rogers, “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh A 63, 193–221 (1952).
  3. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1128 (1962). [CrossRef]
  4. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53(12), 1377–1381 (1963). [CrossRef]
  5. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54(11), 1295–1301 (1964). [CrossRef]
  6. G. W. Stroke, “Lensless Fourier transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965). [CrossRef]
  7. D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56(7), 849–856 (1966). [CrossRef]
  8. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967). [CrossRef]
  9. T. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971). [CrossRef]
  10. G. von Bally, Holography in Medicine and Biology (Springer, 1979).
  11. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications, 1st ed. (Springer, 2011).
  12. N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, eds., Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
  13. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  15. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13(18), 6738–6749 (2005). [CrossRef] [PubMed]
  16. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006). [CrossRef] [PubMed]
  17. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008). [CrossRef] [PubMed]
  18. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
  19. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998). [CrossRef] [PubMed]
  20. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  21. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,” Opt. Lett. 29(20), 2399–2401 (2004). [CrossRef] [PubMed]
  22. D. M. Gale, M. I. Pether, and J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35(1), 131–148 (1996). [CrossRef] [PubMed]
  23. G. S. Kino and S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29(26), 3775–3783 (1990). [CrossRef] [PubMed]
  24. S. Reichelt and H. Zappe, “Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing,” Appl. Opt. 44(27), 5786–5792 (2005). [CrossRef] [PubMed]
  25. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  26. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35(5), 712–714 (2010). [CrossRef] [PubMed]
  27. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006). [CrossRef] [PubMed]
  28. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007). [CrossRef]
  29. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012). [CrossRef] [PubMed]
  30. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013). [CrossRef] [PubMed]
  31. R. Guo, B. Yao, P. Gao, J. Min, J. Han, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye, “Parallel on-axis phase-shifting holographic phase microscopy based on reflective point-diffraction interferometer with long-term stability,” Appl. Opt. 52(15), 3484–3489 (2013). [CrossRef] [PubMed]
  32. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35(14), 2370–2372 (2010). [CrossRef] [PubMed]
  33. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36(16), 3079–3081 (2011). [CrossRef] [PubMed]
  34. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011). [CrossRef] [PubMed]
  35. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012). [CrossRef] [PubMed]
  36. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012). [CrossRef] [PubMed]
  37. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006). [CrossRef] [PubMed]
  38. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008). [CrossRef]
  39. V. Mico, J. Garcia, and Z. Zalevsky, “Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics,” J. Nanophoton. 3(1), 031780 (2009). [CrossRef]
  40. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010). [CrossRef] [PubMed]
  41. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17(15), 13080–13094 (2009). [CrossRef] [PubMed]
  42. X. Cui, J. Ren, G. J. Tearney, and C. Yang, “Wavefront image sensor chip,” Opt. Express 18(16), 16685–16701 (2010). [CrossRef] [PubMed]
  43. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6(1), 57–119 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited