OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15017–15023

Photo-oxidative tuning of individual and coupled GaAs photonic crystal cavities

Alexander Y. Piggott, Konstantinos G. Lagoudakis, Tomas Sarmiento, Michal Bajcsy, Gary Shambat, and Jelena Vučković  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 15017-15023 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a photo-induced oxidation technique for tuning GaAs photonic crystal cavities using a low-power 390 nm pulsed laser. The laser oxidizes a small (< 1 μm) diameter spot, reducing the local index of refraction and blueshifting the cavity. The tuning progress can be actively monitored in real time. We also demonstrate tuning an individual cavity within a pair of proximity-coupled cavities, showing that this method can be used to tune individual cavities in a cavity network, with applications in quantum simulations and quantum computing.

© 2014 Optical Society of America

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: April 8, 2014
Revised Manuscript: June 3, 2014
Manuscript Accepted: June 3, 2014
Published: June 11, 2014

Alexander Y. Piggott, Konstantinos G. Lagoudakis, Tomas Sarmiento, Michal Bajcsy, Gary Shambat, and Jelena Vučković, "Photo-oxidative tuning of individual and coupled GaAs photonic crystal cavities," Opt. Express 22, 15017-15023 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001). [CrossRef]
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  3. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007). [CrossRef] [PubMed]
  4. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef] [PubMed]
  5. T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010). [CrossRef] [PubMed]
  6. M. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules,” Phys. Rev. A 83, 021802 (2011). [CrossRef]
  7. A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012). [CrossRef] [PubMed]
  8. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006). [CrossRef]
  9. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86, 045315 (2012). [CrossRef]
  10. J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. Mabuchi, “Designing quantum memories with embedded control: Photonic circuits for autonomous quantum error correction,” Phys. Rev. Lett. 105, 040502 (2010). [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atatüre, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005). [CrossRef]
  12. N. W. L. Speijcken, M. A. Dndar, A. C. Bedoya, C. Monat, C. Grillet, P. Domachuk, R. Nötzel, B. J. Eggleton, and R. W. van der Heijden, “In situ optofluidic control of reconfigurable photonic crystal cavities,” Appl. Phys. Lett. 100, 261107 (2012). [CrossRef]
  13. S. Vignolini, F. Riboli, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, M. Gurioli, and F. Intonti, “Nanofluidic control of coupled photonic crystal resonators,” Appl. Phys. Lett. 96, 141114 (2010). [CrossRef]
  14. T. Cai, R. Bose, G. S. Solomon, and E. Waks, “Controlled coupling of photonic crystal cavities using photochromic tuning,” Appl. Phys. Lett. 102, 141118 (2013). [CrossRef]
  15. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, Benjamin J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92, 043123 (2008). [CrossRef]
  16. H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009). [CrossRef]
  17. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamolu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006). [CrossRef]
  18. F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Kumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012). [CrossRef]
  19. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012). [CrossRef]
  20. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18, 8781–8789 (2010). [CrossRef] [PubMed]
  21. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011). [CrossRef]
  22. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  23. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79, 1505–1518 (1991). [CrossRef]
  24. C. Yu, D. Podlesnik, M. Schmidt, H. Gilgen, and R. M. Osgood, “Ultraviolet-light-enhanced oxidation of gallium arsenide surfaces studied by x-ray photoelectron and auger electron spectroscopy,” Chem. Phys. Lett. 130, 301–306 (1986). [CrossRef]
  25. C. F. Yu, M. T. Schmidt, D. V. Podlesnik, and R. M. Osgood, “Wavelength dependence of optically induced oxidation of GaAs(100),” J. Vac. Sci. Technol. B 5, 1087–1091 (1987). [CrossRef]
  26. Z. Lu, M. T. Schmidt, D. V. Podlesnik, C. F. Yu, and R. M. Osgood, “Ultraviolet-light-induced oxide formation on GaAs surfaces,” J. Chem. Phys. 93, 7951–7961 (1990). [CrossRef]
  27. J. Petykiewicz, G. Shambat, B. Ellis, and J. Vučković, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett. 101, 011104 (2012). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997).
  29. S. M. Sze, Semiconductor Sensors (John Wiley, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited