OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15024–15038

Optical bistability and four-wave mixing with a single nitrogen-vacancy center coupled to a photonic crystal nanocavity in the weak-coupling regime

Jiahua Li, Rong Yu, Chunling Ding, and Ying Wu  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 15024-15038 (2014)
http://dx.doi.org/10.1364/OE.22.015024


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore optical bistability and degenerate four-wave mixing of a hybrid optical system composed of a photonic crystal nanocavity, a single nitrogen-vacancy center embedded in the cavity, and a nearby photonic waveguide serving for in- and outcoupling of light into the cavity in the weak-coupling regime. Here the hybrid system is coherently driven by a continuous-wave bichromatic laser field consisting of a strong control field and a weak probe field. We take account of the nonlinear nature of the nitrogen-vacancy center in the Heisenberg-Langevin equations and give an effective perturbation method to deal with such problems in the continuous-wave-operation regime. The results clearly show that the bistability region of the population inversion and the intensity of the generated four-wave mixing field can be well controlled by properly adjusting the system practical parameters. The nanophotonic platform can be used to implement our proposal. This investigation may be useful for gaining further insight into the properties of solid-state cavity quantum electrodynamics system and find applications in all-optical wavelength converter and switch in a photonic crystal platform.

© 2014 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(270.1670) Quantum optics : Coherent optical effects
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Photonic Crystals

History
Original Manuscript: April 14, 2014
Revised Manuscript: June 5, 2014
Manuscript Accepted: June 5, 2014
Published: June 11, 2014

Citation
Jiahua Li, Rong Yu, Chunling Ding, and Ying Wu, "Optical bistability and four-wave mixing with a single nitrogen-vacancy center coupled to a photonic crystal nanocavity in the weak-coupling regime," Opt. Express 22, 15024-15038 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-15024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298, 1372–1377 (2002). [CrossRef] [PubMed]
  2. K. J. Vahala, “Optical microcavities,” Nature (London) 424, 839–846 (2003). [CrossRef]
  3. K. J. Vahala, Optical Microcavities (World Scientific Publishing, 2004).
  4. J. Vuckovic, “Quantum optics and cavity QED with quantum dots in photonic crystals,” arXiv: 1402.2541.
  5. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006). [CrossRef]
  6. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003). [CrossRef]
  8. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett. 13, 515–518 (2013). [CrossRef] [PubMed]
  9. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007). [CrossRef]
  10. J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97, 101102 (2010). [CrossRef]
  11. Y. Huo, S. Sandhu, J. Pan, N. Stuhrmann, M. L. Povinelli, J. M. Kahn, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide,” Opt. Lett. 36, 1482–1484 (2011). [CrossRef] [PubMed]
  12. J. Pan, S. Sandhu, Y. Huo, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Experimental demonstration of an all-optical analogue to the superradiance effect in an on-chip photonic crystal resonator system,” Phys. Rev. B 81, 041101(R) (2010). [CrossRef]
  13. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006). [CrossRef]
  14. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006). [CrossRef]
  15. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011). [CrossRef] [PubMed]
  16. J. Wolters, M. Strauß, R. S. Schoenfeld, and O. Benson, “Quantum Zeno phenomenon on a single solid-state spin,” Phys. Rev. A 88, 020101(R) (2013). [CrossRef]
  17. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007). [CrossRef]
  18. R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320, 352–355 (2008). [CrossRef] [PubMed]
  19. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009). [CrossRef] [PubMed]
  20. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010). [CrossRef]
  21. X. K. Xu, Z. X. Wang, C. K. Duan, P. Huang, P. F. Wang, Y. Wang, N. Y. Xu, X. Kong, F. Z. Shi, X. Rong, and J. F. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012). [CrossRef] [PubMed]
  22. L. Jia and E. L. Thomas, “Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal,” Opt. Lett. 36, 3416–3418 (2011). [CrossRef] [PubMed]
  23. L. Jia and E. L. Thomas, “Two-pattern compound photonic crystals with a large complete photonic band gap,” Phys. Rev. A 84, 033810 (2011). [CrossRef]
  24. L. Jia, I. Bita, and E. L. Thomas, “Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals,” Phys. Rev. Lett. 107, 193901 (2011). [CrossRef] [PubMed]
  25. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef] [PubMed]
  26. S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008). [CrossRef] [PubMed]
  27. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010). [CrossRef]
  28. M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fibercoupled toroidal microresonator,” Appl. Phys. Lett. 95, 153110 (2009). [CrossRef]
  29. Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011). [CrossRef]
  30. Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A 84, 011805(R) (2011). [CrossRef]
  31. J. S. Jin, C. S. Yu, P. Pei, and H. S. Song, “Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution,” Phys. Rev. A 81, 042309 (2010). [CrossRef]
  32. X. C. Yu, Y. C. Liu, M. Y. Yan, W. L. Jin, and Y. F. Xiao, “Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator,” Phys. Rev. A 86, 043833 (2012). [CrossRef]
  33. P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009). [CrossRef] [PubMed]
  34. T. van der Sar, J. Hagemeier, W. Pfaff, E. C. Heeres, S. M. Thon, H. Kim, P. M. Petroff, T. H. Oosterkamp, D. Bouwmeester, and R. Hanson, “Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system,” Appl. Phys. Lett. 98, 193103 (2011). [CrossRef]
  35. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef] [PubMed]
  36. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009). [CrossRef] [PubMed]
  37. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010). [CrossRef]
  38. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011). [CrossRef]
  39. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008). [CrossRef]
  40. P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17, 9588–9601 (2009). [CrossRef] [PubMed]
  41. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006). [CrossRef] [PubMed]
  42. W. L. Yang, J. H. An, C. Zhang, M. Feng, and C. H. Oh, “Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities,” Phys. Rev. A 87, 022312 (2013). [CrossRef]
  43. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009). [CrossRef]
  44. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012). [CrossRef] [PubMed]
  45. A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dotCcavity system,” Phys. Rev. A 85, 033802 (2012). [CrossRef]
  46. A. Majumdar, M. Bajcsy, D. Englund, and J. Vučković, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012). [CrossRef]
  47. A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013). [CrossRef] [PubMed]
  48. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006). [CrossRef] [PubMed]
  49. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16, 12154–12162 (2008). [CrossRef] [PubMed]
  50. E. Waks and J. Vuckovic, “Dispersive properties and large Kerr nonlinearities in dipole-induced transparency,” Phys. Rev. A 73, 041803(R) (2006). [CrossRef]
  51. A. Auffèves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007). [CrossRef]
  52. L. I. Childress, J. M. Taylor, A. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005). [CrossRef]
  53. S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for fewphoton transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010). [CrossRef]
  54. E. Rephaeli and S. Fan, “Few-photon single-atom cavity QED With input-output formalism in Fock space,” IEEE J. Sel. Top. Quantum Electron. 18, 1754–1762 (2012). [CrossRef]
  55. Y. Wu, M. C. Chu, and P. T. Leung, “Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency,” Phys. Rev. A 59, 3032–3037 (1999).
  56. A. Majumdar, N. Manquest, A. Faraon, and J. Vučković, “Theory of electro-optic modulation via a quantum dot coupled to a nano-resonator,” Opt. Express 18, 3974–3984 (2010). [CrossRef] [PubMed]
  57. D. Sridharan and E. Waks, “Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency,” Phys. Rev. A 78, 052321 (2008). [CrossRef]
  58. Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010). [CrossRef]
  59. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]
  60. Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805(R) (2012). [CrossRef]
  61. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge University, 2005).
  62. Y. D. Kwon, M. A. Armen, and H. Mabuchi, “Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics,” Phys. Rev. Lett. 111, 203002 (2013). [CrossRef] [PubMed]
  63. A. Dombi, A. Vukics, and P. Domokos, “Optical bistability in strong-coupling cavity QED with a few atoms,” J. Phys. B: At. Mol. Opt. Phys. 46, 224010 (2013). [CrossRef]
  64. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef] [PubMed]
  65. A. Majumdar, A. Papageorge, E. D. Kim, M. Bajscy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B 84, 085310 (2011). [CrossRef]
  66. A. Papageorge, A. Majumdar, E. D. Kim, and J. Vučković, “Bichromatic driving of a solid-state cavity quantum electrodynamics system,” New J. Phys. 14, 013028 (2012). [CrossRef]
  67. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108, 227402 (2012). Also see supplemental material. [CrossRef] [PubMed]
  68. R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, “Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide,” Opt. Express 19, 5398–5409 (2011). [CrossRef] [PubMed]
  69. M. A. Armen and H. Mabuchi, “Low-lying bifurcations in cavity quantum electrodynamics,” Phys. Rev. A 73, 063801 (2006). [CrossRef]
  70. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007). [CrossRef]
  71. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008). [CrossRef] [PubMed]
  72. R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010). [CrossRef] [PubMed]
  73. D. Walls and G. Milburm, Quantum Optics (Springer, 1994). [CrossRef]
  74. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd Ed. (Springer-Verlag, 1999).
  75. S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited