OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15088–15096

Selective excitation of bright and dark plasmonic resonances of single gold nanorods

O. Demichel, M. Petit, G. Colas des Francs, A. Bouhelier, E. Hertz, F. Billard, F. de Fornel, and B. Cluzel  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 15088-15096 (2014)
http://dx.doi.org/10.1364/OE.22.015088


View Full Text Article

Enhanced HTML    Acrobat PDF (9072 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic dark modes are pure near-field resonances since their dipole moments are vanishing in far field. These modes are particularly interesting to enhance nonlinear light-matter interaction at the nanometer scale because radiative losses are mitigated therefore increasing the intrinsic lifetime of the resonances. However, the excitation of dark modes by standard far field approaches is generally inefficient because the symmetry of the electromagnetic near-field distribution has a poor overlap with the excitation field. Here, we demonstrate the selective optical excitation of bright and dark plasmonic modes of single gold nanorods by spatial phase-shaping the excitation beam. Using two-photon luminescence measurements, we unambiguously identify the symmetry and the order of the emitting modes and analyze their angular distribution by Fourier-space imaging.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(180.4315) Microscopy : Nonlinear microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: February 18, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 28, 2014
Published: June 12, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
O. Demichel, M. Petit, G. Colas des Francs, A. Bouhelier, E. Hertz, F. Billard, F. de Fornel, and B. Cluzel, "Selective excitation of bright and dark plasmonic resonances of single gold nanorods," Opt. Express 22, 15088-15096 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-15088


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005). [CrossRef]
  2. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  3. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  4. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  5. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  6. H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.-H. Chan, C.-F. Hsu, J.-K. Wang, and Y.-L. Wang, “Highly raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10-nm gaps,” Adv. Mat. 18, 491–495 (2006). [CrossRef]
  7. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009). [CrossRef] [PubMed]
  8. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett 79, 645–648 (1997). [CrossRef]
  9. A. Ahmed and R. Gordon, “Single molecule directivity enhanced raman scattering using nanoantennas,” Nano Lett. 12, 2625–2630 (2012). [CrossRef] [PubMed]
  10. M. F. Garcia-Parajoy, J.-A. Veerman, S. J. T. van Noort, B. G. de Grooth, J. Greve, and N. F. van Hulst, “Near-field optical microscopy for dna studies at the single molecular level,” Bioimaging 6, 43–53 (1998). [CrossRef]
  11. M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, “Accelerated single photon emission from dye molecule driven nanoantennas assembled on dna,” Nat. Commun. 3, 962 (2012). [CrossRef]
  12. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008). [CrossRef] [PubMed]
  13. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]
  14. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009). [CrossRef] [PubMed]
  15. D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W.-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett. 12, 1349–1353 (2012). [CrossRef] [PubMed]
  16. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett. 10, 2105–2110 (2010). [CrossRef] [PubMed]
  17. G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett. 9, 3608–3611 (2009). [CrossRef] [PubMed]
  18. D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722–3728 (2013). [CrossRef] [PubMed]
  19. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012). [CrossRef] [PubMed]
  20. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  21. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005). [CrossRef] [PubMed]
  22. M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. Garca de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9, 399–404 (2009). [CrossRef]
  23. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12, 5780–5783 (2012). [CrossRef] [PubMed]
  24. A. Bouhelier, M. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 82, 4596 (2003). [CrossRef]
  25. C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. C. des Francs, and C. Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002). [CrossRef] [PubMed]
  26. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  27. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005). [CrossRef]
  28. L. Novotny, E. J. Sanchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order hermite-gaussian beams,” Ultramicroscopy 71, 21–29 (1998). [CrossRef]
  29. C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008). [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  31. E. Tatartschuk, E. Shamonina, and L. Solymar, “Plasmonic excitations in metallic nanoparticles: Resonances, dispersion characteristics and near-field patterns,” Opt. Express 17, 8447–8460 (2009). [CrossRef] [PubMed]
  32. A. Yariv, “Coupled mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973). [CrossRef]
  33. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perrot resonators for surface plasmons,” Appl. Phys. Lett. 95, 201101 (2009). [CrossRef]
  34. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub- and super-radiant modes,” Nano Lett. 11, 1020–1024 (2011). [CrossRef] [PubMed]
  35. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013). [CrossRef] [PubMed]
  36. Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” to be published in J. of Prog. Electromag. Res. (2014).
  37. G. Colas des Francs, C. Girard, and A. Dereux, “Theory of near-field optical imaging with a single molecule as light source,” J. Chem. Phys. 117, 4659–4666 (2002). [CrossRef]
  38. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004). [CrossRef]
  39. I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited