OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15104–15110

Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane

Govind Dayal and S. Anantha Ramakrishna  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 15104-15110 (2014)
http://dx.doi.org/10.1364/OE.22.015104


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterials that have broadband absorption at MIR frequencies, and yet, are transmitive at visible frequencies are fabricated using a semi-conducting Indium Tin Oxide (ITO) film as ground plane. The metamaterial absorber consists of an array of uniform aluminum disks separated by a Zinc Sulphide (ZnS) dielectric spacer layer from the ITO ground plane. The metamaterial was fabricated by a simple, cost-effective vapor deposition through a shadow mask. Compared with the usual metal/dielectric/metal tri-layer absorbers, the metal/dielectric/ITO absorber shows a peak absorbance of 98% and >70% over the mid-infrared regime from 4 to 7 μm. The broadband nature arises due to smaller dispersion in the dielectric permittivity of ITO compared to that of plasmonic metals at mid-infrared frequencies.

© 2014 Optical Society of America

OCIS Codes
(260.3060) Physical optics : Infrared
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: February 11, 2014
Revised Manuscript: April 13, 2014
Manuscript Accepted: June 1, 2014
Published: June 12, 2014

Citation
Govind Dayal and S. Anantha Ramakrishna, "Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane," Opt. Express 22, 15104-15110 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-15104


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Watts, X. Liu, W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012). [PubMed]
  2. S. A. Ramakrishna, T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008). [CrossRef]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  4. A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012). [CrossRef] [PubMed]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef] [PubMed]
  6. T. Maier, H. Brueckl, “Multispectral microbolometers for the mid infra-red,” Opt. Lett. 35, 3766–3768 (2010). [CrossRef] [PubMed]
  7. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef] [PubMed]
  8. J. J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002). [CrossRef] [PubMed]
  9. G. Dayal, S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 372–374 (2013). [CrossRef]
  10. G. Dayal, S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express 20, 17503–17508 (2012). [CrossRef] [PubMed]
  11. C. A. Balanis, Antenna Theory: Analysis and Designs (John Wiley, 2005).
  12. J. Hao, L. Zhao, M. Qui, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phy. Rev. B 83, 165107 (2011). [CrossRef]
  13. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, T. S. Mayer, “Near ideal optical metamaterial absorbers with super octave bandwidth,” ACS Nano 8, 1517–1524 (2014). [CrossRef] [PubMed]
  14. B. Zhang, J. Hendrickson, J. Guo, “Multispectral near perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 660–662 (2013). [CrossRef]
  15. G. Dayal, S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15, 055106 (2013). [CrossRef]
  16. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, J. A. Bossard, “An octave-bandwidth negligible-loss radio-frequency metamaterial,” Nat. Mater. 10, 216–222 (2011). [CrossRef] [PubMed]
  17. Q. Feng, M. Pu, C. Hu, X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37, 2133–2135 (2011). [CrossRef]
  18. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010). [CrossRef]
  19. I. Hamberg, C. G. Granqvist, “Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows,” J. Appl. Phy. 60, R123–R159 (1986). [CrossRef]
  20. COMSOL Multiphysics RF Module 3.5a User’s Guide.
  21. G. Dayal, S. A. Ramakrishna, “Multipolar localized resonances for multi-band metamaterial perfect absorbers” (Unpublished, 2014).
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  23. H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–151 (1984). [CrossRef]
  24. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited