OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15118–15132

Noise-reduction algorithms for optimization-based imaging through multi-mode fiber

Ruo Yu Gu, Reza Nasiri Mahalati, and Joseph M. Kahn  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 15118-15132 (2014)
http://dx.doi.org/10.1364/OE.22.015118


View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three modifications are shown to improve resolution and reduce noise amplification in endoscopic imaging through multi-mode fiber using optimization-based reconstruction (OBR). First, random sampling patterns are replaced by sampling patterns designed to have more nearly equal singular values. Second, the OBR algorithm uses a point-spread function based on the estimated spatial frequency spectrum of the object. Third, the OBR algorithm gives less weight to modes having smaller singular values. In simulations for a step-index fiber supporting 522 spatial modes, the modifications yield a 20% reduction in image error (l2 norm) in the noiseless case, and a further 33% reduction in image error at a 22-dB shot noise-limited SNR as compared to the original method using random sampling patterns and OBR.

© 2014 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(100.3010) Image processing : Image reconstruction techniques
(110.4280) Imaging systems : Noise in imaging systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging

ToC Category:
Imaging Systems

History
Original Manuscript: April 18, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: June 1, 2014
Published: June 12, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Ruo Yu Gu, Reza Nasiri Mahalati, and Joseph M. Kahn, "Noise-reduction algorithms for optimization-based imaging through multi-mode fiber," Opt. Express 22, 15118-15132 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-15118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88 (1976). [CrossRef]
  2. B. Fischer and S. Sternklar, “Image transmission and interferometry with multimode fibers using self-pumped phase conjugation,” Appl. Phys. Lett. 46(2), 113 (1985). [CrossRef]
  3. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21(2), 1656–1668 (2013). [CrossRef] [PubMed]
  4. I. N. Papadopoulos, S. Farahi, and C. Moser, “High resolution, lenseless endoscope based on digital scanning through a multimode optical fiber,” Opt. Express 4(2), 17598–17603 (2013).
  5. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012). [CrossRef] [PubMed]
  6. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012). [CrossRef] [PubMed]
  7. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012). [CrossRef] [PubMed]
  8. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21(19), 22504–22514 (2013). [CrossRef] [PubMed]
  9. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013). [CrossRef] [PubMed]
  10. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media,” Opt. Lett. 38(15), 2776–2778 (2013). [CrossRef] [PubMed]
  11. S. Bianchi, V. P. Rajamanickam, L. Ferrara, E. Di Fabrizio, C. Liberale, and R. Di Leonardo, “Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics,” Opt. Lett. 38(23), 4935–4938 (2013). [CrossRef] [PubMed]
  12. Y. Choi, C. Yoon, M. Kim, J. Yang, and W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38(13), 2253–2255 (2013). [CrossRef] [PubMed]
  13. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005). [CrossRef] [PubMed]
  14. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). [CrossRef]
  15. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies?” IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). [CrossRef]
  16. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (John Wiley, 2004).
  17. J. Mertz, Introduction to Optical Microscopy (Roberts and Company, 2010).
  18. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2004).
  19. G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (John Wiley, 2010), Chap. 3.
  20. A. J. Welch, M. J. C. Van Gemert, W. M. Star, and T. Optics, Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed. (Springer, 2011), Chap. 3.
  21. A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. 20(12), 1471–1481 (1984). [CrossRef]
  22. A. L. McKenzie, “Physics of thermal processes in laser-tissue interaction,” Phys. Med. Biol. 35(9), 1175–1210 (1990). [CrossRef] [PubMed]
  23. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24(19), 3140–3144 (1985). [CrossRef] [PubMed]
  24. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, “Principal modes in graded-index multimode fiber in presence of spatial- and polarization-mode coupling,” J. Lightwave Technol. 27(10), 1248–1261 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited