OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15165–15177

Accurate characterization of nanoimprinted resist patterns using Mueller matrix ellipsometry

Xiuguo Chen, Shiyuan Liu, Chuanwei Zhang, Hao Jiang, Zhichao Ma, Tangyou Sun, and Zhimou Xu  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 15165-15177 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2590 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to control nanoimprint lithography processes to achieve good fidelity, accurate characterization of structural parameters of nanoimprinted resist patterns is highly desirable. Among the possible techniques, optical scatterometry is relatively ideal due to its high throughput, low cost, and minimal sample damage. Compared with conventional optical scatterometry, which is usually based on reflectometry and ellipsometry and obtains at most two ellipsometric angles, Mueller matrix ellipsometry (MME) based scatterometry can provide up to 16 quantities of a 4 × 4 Mueller matrix in each measurement and can thereby acquire much more useful information about the sample. In addition, MME has different measurement accuracy in different measurement configurations. It is expected that much more accurate characterization of nanoimprinted resist patterns can be achieved by choosing appropriate measurement configurations and fully using the rich information hidden in the measured Mueller matrices. Accordingly, nanoimprinted resist patterns were characterized using an in-house developed Mueller matrix ellipsometer in this work. We have experimentally demonstrated that not only more accurate quantification of line width, line height, sidewall angle, and residual layer thickness of nanoimprinted resist patterns can be achieved, but also the residual layer thickness variation over the illumination spot can be directly determined, when performing MME measurements in the optimal configuration and meanwhile incorporating depolarization effects into the optical model. The comparison of MME-extracted imprinted resist profiles has also indicated excellent imprint pattern fidelity.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(290.3200) Scattering : Inverse scattering

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: April 14, 2014
Revised Manuscript: May 31, 2014
Manuscript Accepted: June 4, 2014
Published: June 12, 2014

Xiuguo Chen, Shiyuan Liu, Chuanwei Zhang, Hao Jiang, Zhichao Ma, Tangyou Sun, and Zhimou Xu, "Accurate characterization of nanoimprinted resist patterns using Mueller matrix ellipsometry," Opt. Express 22, 15165-15177 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nm resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  2. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997). [CrossRef]
  3. H.-J. Lee, C. L. Soles, H. W. Ro, R. L. Jones, E. K. Lin, W. Wu, and D. R. Hines, “Nanoimprint pattern transfer quality from specular x-ray reflectivity,” Appl. Phys. Lett. 87(26), 263111 (2005). [CrossRef]
  4. R. L. Jones, T. Hu, C. L. Soles, E. K. Lin, R. M. Reano, S. W. Pang, and D. M. Casa, “Real-time shape evolution of nanoimprinted polymer structures during thermal annealing,” Nano Lett. 6(8), 1723–1728 (2006). [CrossRef] [PubMed]
  5. D. Fuard, C. Perret, V. Farys, C. Gourgon, and P. Schiavone, “Measurement of residual thickness using scatterometry,” J. Vac. Sci. Technol. B 23(6), 3069–3074 (2005). [CrossRef]
  6. R. M. Al-Assaad, S. Regonda, L. Tao, S. W. Pang, and W. Hu, “Characterizing nanoimprint profile shape and polymer flow behavior using visible light angular scatterometry,” J. Vac. Sci. Technol. B 25(6), 2396–2401 (2007). [CrossRef]
  7. H. J. Patrick, T. A. Germer, Y. Ding, H. W. Ro, L. J. Richter, and C. L. Soles, “Scatterometry for in situ measurement of pattern reflow in nanoimprinted polymers,” Appl. Phys. Lett. 93(23), 233105 (2008). [CrossRef]
  8. C. J. Raymond, “Scatterometry for semiconductor metrology,” in Handbook of Silicon Semiconductor Metrology, A. C. Diebold, ed. (CRC, 2001), Chap. 18, pp. 477–514.
  9. X. G. Chen, S. Y. Liu, C. W. Zhang, and H. Jiang, “Improved measurement accuracy in optical scatterometry using correction-based library search,” Appl. Opt. 52(27), 6726–6734 (2013). [CrossRef] [PubMed]
  10. R. Silver, T. A. Germer, R. Attota, B. M. Barnes, B. Bunday, J. Allgair, E. Marx, and J. Jun, “Fundamental limits of optical critical dimension metrology: a simulation study,” Proc. SPIE 6518, 65180U (2007). [CrossRef]
  11. B. Bunday, T. A. Germer, V. Vartanian, A. Cordes, A. Cepler, and C. Settens, “Gaps analysis for CD metrology beyond the 22 nm node,” Proc. SPIE 8681, 86813B (2013). [CrossRef]
  12. T. Novikova, A. De Martino, S. Ben Hatit, and B. Drévillon, “Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics,” Appl. Opt. 45(16), 3688–3697 (2006). [CrossRef] [PubMed]
  13. M. Foldyna, A. De Martino, E. Garcia-Caurel, R. Ossikovski, C. Licitra, F. Bertin, K. Postava, and B. Drévillon, “Critical dimension of bioperiodic gratings determined by spectral ellipsometry and Mueller matrix polarimetry,” Eur. Phys. J. Appl. Phys. 42(3), 351–359 (2008). [CrossRef]
  14. X. G. Chen, S. Y. Liu, C. W. Zhang, and H. Jiang, ““Measurement configuration optimization for accurate grating reconstruction by Mueller matrix polarimetry,” J. Micro/Nanolith. MEMS MOEMS 12(3), 033013 (2013). [CrossRef]
  15. Z. Q. Dong, S. Y. Liu, X. G. Chen, and C. W. Zhang, “Determination of an optimal measurement configuration in optical scatterometry using global sensitivity analysis,” Thin Solid Films 562, 16–23 (2014), doi:. [CrossRef]
  16. T. Novikova, A. De Martino, P. Bulkin, Q. Nguyen, B. Drévillon, V. Popov, and A. Chumakov, “Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction,” Opt. Express 15(5), 2033–2046 (2007). [CrossRef] [PubMed]
  17. T. Novikova, P. Bulkin, V. Popov, B. Haj Ibrahim, and A. De Martino, “V. Popov, B. Haj Ibrahim, and A. De Martino, “Mueller polarimetry as a tool for detecting asymmetry in diffraction grating profiles,” J. Vac. Sci. Technol. B 29(5), 051804 (2011). [CrossRef]
  18. J. Li, J. J. Hwu, Y. Liu, S. Rabello, Z. Liu, and J. Hu, “Mueller matrix measurement of asymmetric gratings,” J. Micro/Nanolith MEMS MOEMS 9(4), 041305 (2010). [CrossRef]
  19. X. G. Chen, C. W. Zhang, and S. Y. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103(15), 151605 (2013). [CrossRef]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  21. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997). [CrossRef]
  22. S. Y. Liu, Y. Ma, X. G. Chen, and C. W. Zhang, “Estimation of the convergence order of rigorous coupled-wave analysis for binary gratings in optical critical dimension metrology,” Opt. Eng. 51(8), 081504 (2012). [CrossRef]
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  24. J. J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta (Lond.) 33(2), 185–189 (1986). [CrossRef]
  25. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  26. T. A. Germer and H. J. Patrick, “Effect of bandwidth and numerical aperture in optical scatterometry,” Proc. SPIE 7638, 76381F (2010). [CrossRef]
  27. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  28. R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16(8), 1997–2006 (1999). [CrossRef]
  29. S. Y. Liu, X. G. Chen, and C. W. Zhang, “Mueller matrix polarimetry: A powerful tool for nanostructure metrology,” ECS Trans. 60(1), 237–242 (2014). [CrossRef]
  30. C. H. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998). [CrossRef]
  31. A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B Condens. Matter 38(3), 1865–1874 (1988). [CrossRef] [PubMed]
  32. X. G. Chen, S. Y. Liu, H. G. Gu, and C. W. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films (2014), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited