OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15298–15304

Role of ion migrations in ultrafast laser written tellurite glass waveguides

T. Toney Fernandez, M. Hernandez, B. Sotillo, S. M. Eaton, G. Jose, R. Osellame, A. Jha, P. Fernandez, and J. Solis  »View Author Affiliations


Optics Express, Vol. 22, Issue 12, pp. 15298-15304 (2014)
http://dx.doi.org/10.1364/OE.22.015298


View Full Text Article

Enhanced HTML    Acrobat PDF (1681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a strong cross migration of ions in a Tellurite (Te) based glass to form waveguides using a high repetition rate femtosecond laser. The tellurite glass matrix was modified using oxides of P, Na and Zn elements of which Te and Na ions play an important role to form waveguides upon laser irradiation. Tellurium was observed to migrate causing a positive index change zone whereas sodium cross migrates to the tellurium deficient zone forming a relatively low index change region. We have used micro-Raman analysis to scan across the waveguide cross-section to understand the state of the glass network and the relation between ion migration and glass densification for waveguiding. We have found that there is an increase in TeO3 units and reduction of TeO4 units in the Te rich zones enabling densification. This work will help guide the new commercial glass manufacturing industries that aim at producing mid-infrared transparent glasses like tellurite, tellurides and chalcogenides for the production of waveguide based devices.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Laser Microfabrication

History
Original Manuscript: April 14, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: May 30, 2014
Published: June 13, 2014

Citation
T. Toney Fernandez, M. Hernandez, B. Sotillo, S. M. Eaton, G. Jose, R. Osellame, A. Jha, P. Fernandez, and J. Solis, "Role of ion migrations in ultrafast laser written tellurite glass waveguides," Opt. Express 22, 15298-15304 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-12-15298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. University of Adelaide tellurite glass data sheet, http://www.adelaide.edu.au/ipas/docs/resources/products/tellurite-glass.pdf .
  2. Schott chalcogenide glasses data sheet, http://www.us.schott.com/advanced_optics/english/download/schott-infrared-chalcog-glasses-family-sheet-october-2013-us.pdf .
  3. Kigre data sheet, www.kigre.com/files/er169.pdf .
  4. G. S. Murugan, T. Suzuki, and Y. Ohishi, Advances in Glass and Optical Materials II (John Wiley, 2006), pp. 135–140.
  5. A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33(10), 863–864 (1997). [CrossRef]
  6. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012). [CrossRef]
  7. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998). [CrossRef] [PubMed]
  8. S. J. Madden and K. T. Vu, “High-performance integrated optics with tellurite glasses: status and prospects,” Int. J. Appl. Glass Sci. 3(4), 289–298 (2012). [CrossRef]
  9. T. T. Fernandez, S. M. Eaton, G. Della Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express 18(19), 20289–20297 (2010). [CrossRef] [PubMed]
  10. K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain,” Opt. Express 18(18), 19192–19200 (2010). [CrossRef] [PubMed]
  11. J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005). [CrossRef]
  12. T. Toney Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38(24), 5248–5251 (2013). [CrossRef] [PubMed]
  13. S. M. Eaton, “Contrasts in thermal diffusion and heat accumulation effects in the fabrication of waveguides in glasses using variable repetition rate femtosecond laser” (University of Toronto, 2008).
  14. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  15. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008). [CrossRef]
  16. Y. Shimotsuma, K. Hirao, J. Qiu, and K. Miura, “Nanofabrication in transparent materials with a femtosecond pulse laser,” J. Non-Cryst. Solids 352(6-7), 646–656 (2006). [CrossRef]
  17. S. K. Sundaram, C. B. Schaffer, and E. Mazur, “Microexplosions in tellurite glasses,” Appl. Phys., A Mater. Sci. Process. 76(3), 379–384 (2003). [CrossRef]
  18. F. Luo, J. Song, X. Hu, H. Sun, G. Lin, H. Pan, Y. Cheng, L. Liu, J. Qiu, Q. Zhao, and Z. Xu, “Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective’s immersion liquid,” Opt. Lett. 36(11), 2125–2127 (2011). [CrossRef] [PubMed]
  19. R. Terai and R. Hayami, “Ionic diffusion in glasses,” J. Non-Cryst. Solids 18(2), 217–264 (1975). [CrossRef]
  20. H. Kahnt, “Ionic transport in glasses,” J. Non-Cryst. Solids 203, 225–231 (1996). [CrossRef]
  21. J. Kieffer, J. E. Masnik, O. Nickolayev, and J. D. Bass, “Structural developments in supercooled alkali tellurite melts,” Phys. Rev. B 58(2), 694–705 (1998). [CrossRef]
  22. M. Tatsumisago, S.-K. Lee, T. Minami, and Y. Kowada, “Raman spectra of TeO2-based glasses and glassy liquids: local structure change with temperature in relation to fragility of liquid,” J. Non-Cryst. Solids 177, 154–163 (1994). [CrossRef]
  23. H. Niida, T. Uchino, J. Jin, S.-H. Kim, T. Fukunaga, and T. Yoko, “Structure of alkali tellurite glasses from neutron diffraction and molecular orbital calculations,” J. Chem. Phys. 114(1), 459–467 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited