OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 12 — Jun. 16, 2014
  • pp: 15320–15327

Combinatorial color arrays based on optical micro-resonators in monolithic architecture

In-Ho Lee, Sin-Hyung Lee, Chang-Min Keum, Se-Um Kim, and Sin-Doo Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 12, pp. 15320-15327 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate two types of combinatorial color arrays based on the Fabry-Perot (FP) micro-resonators in monolithic architecture. Optical micro-resonators corresponding to color elements are constructed using a soluble dielectric material between two transreflective layers by transfer-printing in either a pattern-by-pattern or a pattern-on-pattern fashion. The color palette depends primarily on the thickness and the refractive index of a dielectric material embedded in the micro-resonator. A self-defined lateral gap between two adjacent color elements provides the functionality of light-blocking by the underlying background layer. A prototype of a liquid crystal display incorporated with our combinatorial color array is also demonstrated. This monolithic integration of different FP micro-resonators leads to a versatile platform to build up a new class of color arrays for a variety of visual applications including displays and coloration devices.

© 2014 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices
(230.3720) Optical devices : Liquid-crystal devices
(130.7408) Integrated optics : Wavelength filtering devices
(130.3990) Integrated optics : Micro-optical devices

ToC Category:

Original Manuscript: May 2, 2014
Revised Manuscript: June 9, 2014
Manuscript Accepted: June 10, 2014
Published: June 13, 2014

In-Ho Lee, Sin-Hyung Lee, Chang-Min Keum, Se-Um Kim, and Sin-Doo Lee, "Combinatorial color arrays based on optical micro-resonators in monolithic architecture," Opt. Express 22, 15320-15327 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, “Structural color and the lotus effect,” Angew. Chem. Int. Ed. Engl. 42(8), 894–897 (2003). [CrossRef] [PubMed]
  2. O. L. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, P. Spahn, and T. Ruhl, “Nanoparticle-tuned structural color from polymer opals,” Opt. Express 15(15), 9553–9561 (2007). [CrossRef] [PubMed]
  3. Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007). [CrossRef] [PubMed]
  4. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008). [CrossRef]
  5. T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: from plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011). [CrossRef] [PubMed]
  6. Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013). [CrossRef] [PubMed]
  7. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999). [CrossRef]
  8. A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011). [CrossRef]
  9. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008). [CrossRef]
  10. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011). [CrossRef]
  11. Y. S. Do, J. H. Park, B. Y. Hwang, S. M. Lee, B. K. Ju, and K. C. Choi, “Plasmonic color filter and its fabrication for large-area applications,” Adv. Opt. Mater. 1(2), 133–138 (2013). [CrossRef]
  12. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater. 14(8), 3305–3315 (2002). [CrossRef]
  13. H. Kim, J. Ge, J. Kim, S.-E. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009). [CrossRef]
  14. S. Y. Lee, S. H. Kim, H. Hwang, J. Y. Sim, and S. M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014). [CrossRef] [PubMed]
  15. J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014). [CrossRef]
  16. Y.-T. Yoon and S.-S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18(5), 5344–5349 (2010). [CrossRef] [PubMed]
  17. Y. H. Chen, C. W. Chen, Z. Y. Huang, W. C. Lin, L. Y. Lin, F. Lin, K. T. Wong, and H. W. Lin, “Microcavity-embedded, colour-tuneable, transparent organic solar cells,” Adv. Mater. 26(7), 1129–1134 (2014). [CrossRef] [PubMed]
  18. H.-S. Lee, Y.-T. Yoon, S.-S. Lee, S.-H. Kim, and K.-D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007). [CrossRef] [PubMed]
  19. Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16(4), 2374–2380 (2008). [CrossRef] [PubMed]
  20. H. Lee, J. Kim, H. Kim, J. Kim, and S. Kwon, “Colour-barcoded magnetic microparticles for multiplexed bioassays,” Nat. Mater. 9(9), 745–749 (2010). [CrossRef] [PubMed]
  21. F. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, and J. Zi, “Structural color change in longhorn beetles Tmesisternus isabellae,” Opt. Express 17(18), 16183–16191 (2009). [CrossRef] [PubMed]
  22. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005). [CrossRef] [PubMed]
  23. H. Fudouzi and T. Sawada, “Photonic rubber sheets with tunable color by elastic deformation,” Langmuir 22(3), 1365–1368 (2006). [CrossRef] [PubMed]
  24. G. R. Fowles, Introduction to Modern Optics (Courier Dover Publications, 1975).
  25. J. Patel, M. Saifi, D. Berreman, C. Lin, N. Andreadakis, and S.-D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990). [CrossRef]
  26. J. Patel and S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot étalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991). [CrossRef]
  27. W. Choi, M.-H. Kim, Y.-J. Na, and S.-D. Lee, “Complementary transfer-assisted patterning of high-resolution heterogeneous elements on plastic substrates for flexible electronics,” Org. Electron. 11(12), 2026–2031 (2010). [CrossRef]
  28. A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater. 24(39), 5284–5318 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited