OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15346–15351

Scalable UWB photonic generator based on the combination of doublet pulses

Vanessa Moreno, Manuel Rius, José Mora, Miguel A. Muriel, and José Capmany  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 15346-15351 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2053 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics

Original Manuscript: April 10, 2014
Revised Manuscript: June 9, 2014
Manuscript Accepted: June 9, 2014
Published: June 17, 2014

Vanessa Moreno, Manuel Rius, José Mora, Miguel A. Muriel, and José Capmany, "Scalable UWB photonic generator based on the combination of doublet pulses," Opt. Express 22, 15346-15351 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yao, “Photonics for Ultrawideband Communications,” IEEE Microw. Mag.10(4), 82–95 (2009). [CrossRef]
  2. A. Zadok, D. Grodensky, D. Kravitz, Y. Peled, M. Tur, X. Wu, and A. E. Willmer, “Ultra-Wideband Waveform Generation using nonlinear propagation in optical fibers,” in Ultra Wideband Communications: Novel Trends-Antennas and Propagation (In Tech,2011).
  3. J. Yao, “Microwave photonics: Arbitrary waveform generation,” Nat. Photonics4(2), 79–80 (2010). [CrossRef]
  4. J. Capmany and D. Novak, “Microwave Photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  5. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  6. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources,” Opt. Express21(23), 28914–28921 (2013). [CrossRef] [PubMed]
  7. Y. Yu, J. Dong, and X. Zhang, “Ultra Wideband pulse generation based on cascaded semiconductor optical amplifiers,” International Conference on Optical Communications and Networks, Canton, (2011), pp. 1–2.
  8. V. Moreno, M. Rius, J. Mora, M. A. Muriel, and J. Capmany, “Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI,” Opt. Express21(19), 22911–22917 (2013). [CrossRef] [PubMed]
  9. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006). [CrossRef]
  10. F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fIBER-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006). [CrossRef]
  11. E. Zhou, X. Xu, K.-S. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010). [CrossRef]
  12. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulse,” Opt. Lett.36(12), 2363–2365 (2011).
  13. P. Li, H. Chen, M. Chen, and S. Xie, “Gigabit/s Photonic Generation, Modulation,and Transmission for a Reconfigurable Impulse Radio UWB Over Fiber System,” IEEE Photonics Journal4(3), 805–816 (2012).
  14. S. Tesfay, C. Okonkwo, H. Yang, D. Visani, Y. Shi, H. D. Jung, and E. Tangdiongga, “Performance Evaluation of IR-UWB in short range fiber communication using linear combination of monocycles,” J. Lightwave Technol.29(8), 1143–1151 (2011). [CrossRef]
  15. P. Li, H. Chen, X. Wang, H. Yu, M. Chen, and S. Xie, “Photonic Generation and Transmission of 2-Gbit/s power-efficient IR-UWB signals employing an electro-optic phase modulator,” IEEE Photon. Technol. Lett.25(2), 144–146 (2013). [CrossRef]
  16. H. Feng, M. P. Fok, S. Xiao, J. Ge, Q. Zhou, M. Locke, R. Toole, and W. Hu, “A reconfigurable high-order UWB signals generation scheme using RSOA-MZI structure,” IEEE Photonics Journal6(2), 790307 (2014). [CrossRef]
  17. S. Mohammad and S. Sadough, “A Tutorial on Ultra Wideband Modulation and Detection Schemes,” (2009),pp 1–22.
  18. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013). [CrossRef]
  19. L. Zhuang, C. Taddei, M. Hoekman, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Ring resonator based on-chip PM-IM convertor for high-performance microwave photonic links,” International Topical Meeting on Microwave Photonics (MWP), Alexandria VA (2013), pp. 123–126.
  20. S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010). [CrossRef]
  21. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, K. Yamada, H. Kimura, Y. Ishikawa, K. Wada, and S. Mutoh, “Monolithic integration of silica-based AWG filter and germanium photodiodes for one-chip WDM receiver,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), Los Angeles (2012), pp. 1–3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited