OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15397–15409

Simple model for plasmon enhanced fluorescence correlation spectroscopy

Lutz Langguth and A. Femius Koenderink  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 15397-15409 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallic nano-antennas provide strong field confinement and intensity enhancement in hotspots and thus can ultimately enhance fluorescence detection and provide ultra small detection volumes. In solution-based fluorescence measurements, the diffraction limited focus driving the nano-antenna can outshine the fluorescence originating from the hotspot and thus render the benefits of the hotspot negligible. We introduce a model to calculate the effect of a nano-antenna, or any other object creating a nontrivial intensity distribution, for fluorescence fluctuation measurements. Approximating the local field enhancement of the nano-antenna by a 3D Gaussian profile, we show which hotspot sizes and intensities are the most beneficial for an FCS measurement and compare it to realistic antenna parameters from literature.

© 2014 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: April 25, 2014
Revised Manuscript: May 30, 2014
Manuscript Accepted: May 30, 2014
Published: June 17, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Lutz Langguth and A. Femius Koenderink, "Simple model for plasmon enhanced fluorescence correlation spectroscopy," Opt. Express 22, 15397-15409 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [CrossRef] [PubMed]
  2. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.1, 601–626 (2008). [CrossRef]
  3. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst133, 1308–1346 (2008). [CrossRef] [PubMed]
  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), 3rd ed. [CrossRef]
  5. P. Schwille and E. Haustein, Fluorescence Correlation Spectroscopy: An Introduction to Its Concepts and Applications (Biophysics Textbook Online 1(3), Göttingen, 2001).
  6. M. Agio and A. Alú, Optical Antennas (Cambridge University, 2013).
  7. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111, 3888–3912 (2011). [CrossRef] [PubMed]
  8. D. Magde, E. Elson, and W. Webb, “Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett.29, 705–708 (1972). [CrossRef]
  9. D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B77, 045413 (2008). [CrossRef]
  10. J. Wenger, D. Gerard, P. F. Lenne, H. Rigneault, N. Bonod, E. Popov, D. Marguet, C. Nelep, and T. W. Ebbesen, “Biophotonics applications of nanometric apertures,” Int. J. Mater. Prod. Tec.34, 488–506 (2009). [CrossRef]
  11. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299, 682–686 (2003). [CrossRef] [PubMed]
  12. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011). [CrossRef] [PubMed]
  13. J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P.-F. Lenne, “Single-fluorophore diffusion in a lipid membrane over a subwavelength aperture,” J. Biol. Phys.32, SN1–4 (2006). [CrossRef] [PubMed]
  14. J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express16, 3008 (2008). [CrossRef] [PubMed]
  15. D. Punj, P. Ghenuche, S. B. Moparthi, J. de Torres, V. Grigoriev, H. Rigneault, and J. Wenger, “Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations,” Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. (2014).
  16. H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod,” Angew. Chem. Int. Edit.52, 1217–1221 (2013). [CrossRef]
  17. S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods,” ACS Nano8, 4440–4449 (2014). [CrossRef] [PubMed]
  18. A. Kinkhabwala, Z. Yu, S. Fan, and W. Moerner, “Fluorescence correlation spectroscopy at high concentrations using gold bowtie nanoantennas,” Chem. Phys.406, 3–8 (2012). [CrossRef]
  19. L. C. Estrada, P. F. Aramendía, and O. E. Martínez, “10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas,” Opt. Express16, 20597–20602 (2008). [CrossRef] [PubMed]
  20. Q. Wang, G. Lu, L. Hou, T. Zhang, C. Luo, H. Yang, G. Barbillon, F. H. Lei, C. A. Marquette, P. Perriat, O. Tillement, S. Roux, Q. Ouyang, and Q. Gong, “Fluorescence correlation spectroscopy near individual gold nanoparticle,” Chem. Phys. Lett.503, 256–261 (2011). [CrossRef]
  21. D. Punj, J. de Torres, H. Rigneault, and J. Wenger, “Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration,” Opt. Express21, 27338–27343 (2013). [CrossRef] [PubMed]
  22. G. Lu, J. Liu, T. Zhang, W. Li, L. Hou, C. Luo, F. Lei, M. Manfait, and Q. Gong, “Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy,” Nanoscale4, 3359–3364 (2012). [CrossRef] [PubMed]
  23. S. Dutta Choudhury, K. Ray, and J. R. Lakowicz, “Silver Nanostructures for Fluorescence Correlation Spectroscopy: Reduced Volumes and Increased Signal Intensities,” J. Phys. Chem. Lett.3, 2915–2919 (2012). [CrossRef]
  24. J. Wenger, “Fluorescence Enhancement Factors on Optical Antennas: Enlarging the Experimental Values without Changing the Antenna Design,” Int. J. Opt.2012, 1–7 (2012). [CrossRef]
  25. G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express16, 17654–17666 (2008). [CrossRef] [PubMed]
  26. J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P.-F. Lenne, “Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization,” Biophys. J.92, 913–919 (2007). [CrossRef]
  27. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. García-Parajó, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotechnol.8, 512–516 (2013). [CrossRef] [PubMed]
  28. I. Gregor, D. Patra, and J. Enderlein, “Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation,” ChemPhysChem6, 164–170 (2005). [CrossRef] [PubMed]
  29. M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71, 609–616 (1999). [CrossRef] [PubMed]
  30. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem8, 433–443 (2007). [CrossRef] [PubMed]
  31. S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, “Biological and Chemical Applications of Fluorescence Correlation Spectroscopy: A Review,” Biochemistry41, 697–705 (2002). [CrossRef] [PubMed]
  32. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908). [CrossRef]
  33. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71, 235420 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited