OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15437–15446

Dual scanning and full-field hard x-ray microscopy with a laboratory source

Cristoffer J. Blackhall, Kaye S. Morgan, and Daniele Pelliccia  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 15437-15446 (2014)
http://dx.doi.org/10.1364/OE.22.015437


View Full Text Article

Enhanced HTML    Acrobat PDF (2193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the experimental demonstration of a hard x-ray microscopy scheme achieving absorption and phase contrast imaging with a standard laboratory source. The x-ray optical system features two crossed planar waveguides coupled to the primary source. The dual waveguide acts as a secondary micron-sized source, enabling high imaging resolution. Both scanning and full-field imaging modes are demonstrated with the same experimental system, with a resolution of about 2 μm in scanning mode. Examples of absorption, differential phase and retrieved phase depth of thin metal grids and glass micro-spheres are reported as proof of concept of the technique.

© 2014 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.5810) Microscopy : Scanning microscopy
(180.7460) Microscopy : X-ray microscopy
(230.7390) Optical devices : Waveguides, planar
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

History
Original Manuscript: April 30, 2014
Revised Manuscript: June 6, 2014
Manuscript Accepted: June 9, 2014
Published: June 17, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Cristoffer J. Blackhall, Kaye S. Morgan, and Daniele Pelliccia, "Dual scanning and full-field hard x-ray microscopy with a laboratory source," Opt. Express 22, 15437-15446 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-15437


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science334, 1234–1239 (2011). [CrossRef] [PubMed]
  2. P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, and A. Chabli, “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Instrum.80, 056101 (2009). [CrossRef] [PubMed]
  3. C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommela, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “Hard X-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res. A616, 93–97 (2010). [CrossRef]
  4. R. P. Winarski, M. V. Holt, V. Rose, P. Fuesz, D. Carbaugh, C. Benson, D. Shu, D. Kline, G. B. Stephenson, I. McNulty, and J. Maser, “A hard X-ray nanoprobe beamline for nanoscale microscopy,” J. Synchrotron Rad.19, 1056–1060 (2013). [CrossRef]
  5. K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci.107, 529–534 (2010). [CrossRef]
  6. J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong, Z. Wu, and Y. Tian, “3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV,” Anal. Bioanal. Chem.397, 2117–2121 (2010). [CrossRef] [PubMed]
  7. A. Schropp, P. Boye, A. Goldschmidt, S. Hönig, R. Hoppe, J. Patommel, C. Rakete, D. Samberg, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard X-ray scanning microscopy,” J. Microscopy241, 9–12 (2011). [CrossRef]
  8. Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, “Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy,” Nano Lett.10, 1922–1926 (2010). [CrossRef] [PubMed]
  9. G. Schmahl, D. Rudolph, B. Niemann, and O. Christ, “Zone-plate X-ray microscopy,” Quantum Rev. Biophys.13, 297–315 (1980). [CrossRef]
  10. J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Q. Rev. Biophys.28, 33–130 (1995). [CrossRef] [PubMed]
  11. C. Larabell C and M. Le Gros, “X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution,” Mol. Biol. Cell.15, 957–962 (2004). [CrossRef]
  12. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “”Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature435, 1210–1213 (2005). [CrossRef] [PubMed]
  13. B. Hornberger, M. Feser, and C. Jacobsen, “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy107, 644–655 (2007). [CrossRef] [PubMed]
  14. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384335–338 (1996). [CrossRef]
  15. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.682774–2782 (1997). [CrossRef]
  16. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase-contrast microscopy and microtomography,” Opt. Express11, 2289–2302 (2003). [CrossRef] [PubMed]
  17. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Phys.2, 258–261 (2006). [CrossRef]
  18. A. Olivo and R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett.91, 074106 (2007). [CrossRef]
  19. I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80, 093702 (2009). [CrossRef] [PubMed]
  20. D. Pelliccia and D. M. Paganin, “X-ray phase imaging with a laboratory source using selective reflection from a mirror,” Opt. Express21, 9308–9314 (2013). [CrossRef] [PubMed]
  21. A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun, “X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source,” Z. Kristallogr.222, 650–655 (2007). [CrossRef]
  22. P. Stahlhut, T. Ebensperger, S. Zabler, and R. Hanke, “A laboratory X-ray microscopy setup using a field emission electron source and micro-structured reflection targets,” Nucl. Instrum. Meth. Phys. Res. B324, 4–10 (2014). [CrossRef]
  23. D. Pelliccia, A. Sorrentino, I. Bukreeva, A. Cedola, F. Scarinci, M. Ilie, A.M. Gerardino, M. Fratini, and S. Lagomarsino, “X-ray phase contrast microscopy at 300 nm resolution with laboratory sources,” Opt. Express18, 15998–16004 (2010). [CrossRef] [PubMed]
  24. C. Bergemann, H. Keymeulen, and J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett.91, 204801 (2003). [CrossRef] [PubMed]
  25. M. Osterhoff and T. Salditt, “Coherence filtering of x-ray waveguides: analytical and numerical approach,” New J. Physics13, 103026 (2011). [CrossRef]
  26. D. Pelliccia, I Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectroc. Acta B62, 615–621 (2007). [CrossRef]
  27. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  28. K. J. Tsanaktsidis, D. M. Paganin, and D. Pelliccia, “Analytical description of partially coherent propagation and absorption losses in x-ray planar waveguides,” Opt. Lett.38, 1808–1810 (2013). [CrossRef] [PubMed]
  29. L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Bukreeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B77, 081408R (2008). [CrossRef]
  30. R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed. (McGraw-Hill, 2000).
  31. T. Michel, P. T. Talla, M. Firsching, J. Durst, M. Böhnel, and G. Anton, “Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix2,” Nucl. Instrum. Methods Phys. Res. A598, 510–514 (2009). [CrossRef]
  32. D. M. Paganin, Coherent X-ray Optics (Oxford University Press, 2006). [CrossRef]
  33. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid,” Opt. Express19, 19781–19789 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited