OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15473–15483

Making smart phones smarter with photonics

Jerome Lapointe, Mathieu Gagné, Ming-Jun Li, and Raman Kashyap  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 15473-15483 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1638 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Smart phones and tablets have become ubiquitous. Corning® Gorilla® Glass is well-known to provide durability and scratch-resistance to many smart phones and other mobile devices. Using femtosecond lasers, we report high quality photonic devices, such as a temperature sensor and an authentication security system, we believe for the first time. It was found that this kind of glass is an exceptional host for three dimensional waveguides. High quality multimode waveguides are demonstrated with the lowest measured loss value (0.027 dB/cm loss) to our knowledge in any glass using fs laser inscription. High quality (0.053 dB/cm loss) single-mode waveguides have been also fabricated using a fs laser scan speed of 300 mm/s, the fastest fabrication speed reported to date. The longest high quality waveguides (up to 1m) are also reported. Experiments reveal that Gorilla Glass seems to be an ideal glass to write waveguides just below the surface, which is of great interest in sensing applications.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes
(210.0210) Optical data storage : Optical data storage
(230.0230) Optical devices : Optical devices
(230.3120) Optical devices : Integrated optics devices
(240.0240) Optics at surfaces : Optics at surfaces
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: February 17, 2014
Revised Manuscript: April 16, 2014
Manuscript Accepted: April 20, 2014
Published: June 18, 2014

Jerome Lapointe, Mathieu Gagné, Ming-Jun Li, and Raman Kashyap, "Making smart phones smarter with photonics," Opt. Express 22, 15473-15483 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Corning, A Day Made of Glass... Made possible by Corning. Retrieved October 10, 2013, from YouTube Web site: http://www.youtube.com/watch?v=6Cf7IL_eZ38 (2011).
  2. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguides: a review,” Opt. Eng.50, 7 (2011).
  3. R. V. Ramaswamy and R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988). [CrossRef]
  4. B. Svecova, J. Spirkova, S. Janakova, M. Mika, J. Oswald, and A. Mackova, “Diffusion process applied in fabrication of ion-exchanged optical waveguides in novel Er3+ and Er3+/Yb3+-doped silicate glasses,” J. Mat. Sci. Mater.20(S1), 510–513 (2009). [CrossRef]
  5. J. Grelin, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Study of Ag+/Na+ ion-exchange diffusion on germanate glasses: Realization of single-mode waveguides at the wavelength of 1.55 μm,” Mat. Sci. Eng. B-Solid149(2), 190–194 (2008). [CrossRef]
  6. D. Kapila and J. L. Plawsky, “Diffusion processes for integrated waveguide fabrication in glasses: a solid-state electrochemical approach,” Chem. Eng. Sci.50(16), 2589–2600 (1995). [CrossRef]
  7. B. J. P. da Silva, R. P. de Melo, E. L. Falco-Filho, and C. B. de Arajo, “Potassium source for ion-exchange glass waveguide fabrication,” Appl. Opt.36(24), 5949 (1997). [CrossRef] [PubMed]
  8. J. Schröfel, J. Špirková, Z. Burian, and V. Drahoš, “Li+ for Na+ ion exchange in Na2O - Rich glass: An effective method for fabricating low-loss optical waveguides,” Ceram.- Silikaty47, 169–174 (2003).
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  10. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329 (1997). [CrossRef]
  11. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids239(1-3), 91–95 (1998). [CrossRef]
  12. R. Adar, M. R. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silicawaveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994). [CrossRef]
  13. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009). [CrossRef]
  14. J. Lapointe, R. Kashyap, and M.-J. Li, “High quality photonic devices directly written in Gorilla glass using a fs laser,” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), paper W3.38. [CrossRef]
  15. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, 2002).
  16. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett.31(23), 3495–3497 (2006). [CrossRef] [PubMed]
  17. P. R. Herman, H. Zhang, S. M. Eaton, and J. Li, “Multipulse system for writing waveguides, gratings, and integrated optical circuits,” US Patent US2012/0039567A1 (2012).
  18. R. Kashyap, J. Lapointe, and M. Gagné, “Methods of making optical waveguides in glass and devices and system using the same,” US Provisional Patent Application 61/911,148 (2014).
  19. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 µm by astigmatic beam focusing,” Opt. Lett.27(21), 1938–1940 (2002). [CrossRef] [PubMed]
  20. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B20(7), 1559–1567 (2003). [CrossRef]
  21. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13(15), 5676–5681 (2005). [CrossRef] [PubMed]
  22. W. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. S. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express16(20), 16215–16226 (2008). [CrossRef] [PubMed]
  23. H. J. Arditty and H. C. Leèfovre, “Sagnac effect in fiber gyroscopes,” Opt. Lett.6(8), 401–403 (1981). [CrossRef] [PubMed]
  24. J. Capmany, P. Muñoz, S. Sales, D. Pastor, B. Ortega, and A. Martinez, “Arrayed waveguide Sagnac interferometer,” Opt. Lett.28(3), 197–199 (2003). [CrossRef] [PubMed]
  25. B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III Fr6, 1595–1624 (1996).
  26. M. Gagné and R. Kashyap, “New nanosecond Q-switched Nd:VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication,” Opt. Commun.283(24), 5028–5032 (2010). [CrossRef]
  27. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30(9), 1060–1062 (2005). [CrossRef] [PubMed]
  28. Corning, “Corning Gorilla Glass Technical materials,” Retrieved October 11, 2013, from Corning Web site: http://www.corning.com/docs/specialtymaterials/pisheets/PI2317.pdf (2008).
  29. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited