OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15484–15501

Nonlinear optical point light sources through field enhancement at metallic nanocones

Philipp Reichenbach, Anke Horneber, Dominik A. Gollmer, Andreas Hille, Josip Mihaljevic, Christian Schäfer, Dieter P. Kern, Alfred J. Meixner, Dai Zhang, Monika Fleischer, and Lukas M. Eng  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 15484-15501 (2014)
http://dx.doi.org/10.1364/OE.22.015484


View Full Text Article

Enhanced HTML    Acrobat PDF (8114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A stable nonlinear optical point light source is investigated, based on field enhancement at individual, pointed gold nanocones with sub-wavelength dimensions. Exciting these cones with near-infrared, focused radially polarized femtosecond beams allows for tip-emission at the second harmonic wavelength (second harmonic generation, SHG) in the visible range. In fact, gold nanocones with ultra-sharp tips possess interesting nonlinear optical (NLO) properties for SHG and two-photon photoluminescence (TPPL) emission, due to the enhanced electric field confinement at the tip apex combined with centrosymmetry breaking. Using two complementary optical setups for bottom or top illumination a sharp tip SHG emission is discriminated from the broad TPPL background continuum. Moreover, comparing the experiments with theoretical calculations manifests that these NLO signatures originate either from the tip apex or the base edge of the nanocones, clearly depending on the cone size, the surrounding medium, and illumination conditions. Finally, it is demonstrated that the tip-emitted signal vanishes when switching from radial to azimuthal polarization.

© 2014 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.4236) Materials : Nanomaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 25, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 27, 2014
Published: June 18, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Philipp Reichenbach, Anke Horneber, Dominik A. Gollmer, Andreas Hille, Josip Mihaljevic, Christian Schäfer, Dieter P. Kern, Alfred J. Meixner, Dai Zhang, Monika Fleischer, and Lukas M. Eng, "Nonlinear optical point light sources through field enhancement at metallic nanocones," Opt. Express 22, 15484-15501 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-15484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009). [CrossRef] [PubMed]
  2. J.-J. Greffet, “Applied physics: nanoantennas for light emission,” Science308(5728), 1561–1563 (2005). [CrossRef] [PubMed]
  3. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  4. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics6(5), 299–303 (2012). [CrossRef]
  5. B. Naydenov, R. Kolesov, A. Batalov, J. Meijer, S. Pezzagna, D. Rogalla, F. Jelezko, and J. Wrachtrup, “Engineering single photon emitters by ion implantation in diamond,” Appl. Phys. Lett.95(18), 181109 (2009). [CrossRef] [PubMed]
  6. S. Kühn, C. Hettich, C. Schmitt, J. P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc.202(1), 2–6 (2001). [CrossRef] [PubMed]
  7. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett.33(6), 611–613 (2008). [CrossRef] [PubMed]
  8. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett.14(25), 1029–1031 (1965). [CrossRef]
  9. H. Eghlidi, K. G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9(12), 4007–4011 (2009). [CrossRef] [PubMed]
  10. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007). [CrossRef] [PubMed]
  11. J. Q. Jiao, X. Wang, F. Wackenhut, A. Horneber, L. Chen, A. V. Failla, A. J. Meixner, and D. Zhang, “Polarization-dependent SERS at differently oriented single gold nanorods,” ChemPhysChem13(4), 952–958 (2012). [CrossRef] [PubMed]
  12. A. Wokaun, J. G. Bergman, J. P. Heritage, A. M. Glass, P. F. Liao, and D. H. Olson, “Surface second-harmonic generation from metal island films and microlithographic structures,” Phys. Rev. B24(2), 849–856 (1981). [CrossRef]
  13. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003). [CrossRef] [PubMed]
  14. P. Reichenbach, L. M. Eng, U. Georgi, and B. Voit, “3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays,” J. Laser Appl.24(4), 042005 (2012). [CrossRef]
  15. X.-W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18(10), 10878–10887 (2010). [CrossRef] [PubMed]
  16. H. Furukawa and S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun.148(4-6), 221–224 (1998). [CrossRef]
  17. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000). [CrossRef]
  18. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010). [CrossRef] [PubMed]
  19. F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011). [CrossRef] [PubMed]
  20. R. P. Zaccaria, A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, “Fully analytical description of adiabatic compression in dissipative polaritonic structures,” Phys. Rev. B86(3), 035410 (2012). [CrossRef]
  21. M. Malerba, A. Alabastri, G. Cojoc, M. Francardi, M. Perrone Donnorso, R. Proietti Zaccaria, F. De Angelis, and E. Di Fabrizio, “Optimization of surface plasmon polariton generation in a nanocone through linearly polarized laser beams,” Microelectron. Eng.97, 204–207 (2012). [CrossRef]
  22. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25(6), 955–960 (2008). [CrossRef]
  23. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007). [CrossRef] [PubMed]
  24. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004). [CrossRef] [PubMed]
  25. C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009). [CrossRef] [PubMed]
  26. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  27. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  28. C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules,” NanoBiotechnology3(3-4), 172–196 (2007). [CrossRef]
  29. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(P1), 72–76 (2001). [CrossRef] [PubMed]
  30. M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011). [CrossRef] [PubMed]
  31. M. Fleischer, D. Zhang, K. Braun, S. Jäger, R. Ehlich, M. Häffner, C. Stanciu, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Tailoring gold nanostructures for near-field optical applications,” Nanotechnology21(6), 065301 (2010). [CrossRef] [PubMed]
  32. M. Fleischer, A. Weber-Bargioni, S. Cabrini, and D. P. Kern, “Fabrication of metallic nanocones by induced deposition of etch masks and ion milling,” Microelectron. Eng.88(8), 2247–2250 (2011). [CrossRef]
  33. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, and B. Kasemo, “Hole–Mask Colloidal Lithography,” Adv. Mater.19(23), 4297–4302 (2007). [CrossRef]
  34. T. I. Kim, J. H. Kim, S. J. Son, and S. M. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology19(29), 295302 (2008). [CrossRef] [PubMed]
  35. J. M. Kontio, H. Husu, J. Simonen, M. J. Huttunen, J. Tommila, M. Pessa, and M. Kauranen, “Nanoimprint fabrication of gold nanocones with approximately 10 nm tips for enhanced optical interactions,” Opt. Lett.34(13), 1979–1981 (2009). [CrossRef] [PubMed]
  36. J. M. Kontio, J. Simonen, J. Tommila, and M. Pessa, “Arrays of metallic nanocones fabricated by UV- nanoimprint lithography,” Microelectron. Eng.87(9), 1711–1715 (2010). [CrossRef]
  37. L. Isa, K. Kumar, M. Müller, J. Grolig, M. Textor, and E. Reimhult, “Particle Lithography from Colloidal Self-Assembly at Liquid-Liquid Interfaces,” ACS Nano4(10), 5665–5670 (2010). [CrossRef] [PubMed]
  38. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams,” Nano Lett.12(6), 3207–3212 (2012). [CrossRef] [PubMed]
  39. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  40. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett.93(11), 111114 (2008). [CrossRef]
  41. C. Schäfer, D. A. Gollmer, A. Horrer, J. Fulmes, A. Weber-Bargioni, S. Cabrini, P. J. Schuck, D. P. Kern, and M. Fleischer, “A single particle plasmon resonance study of 3D conical nanoantennas,” Nanoscale5(17), 7861–7866 (2013). [CrossRef] [PubMed]
  42. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. De Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29(1), 62–64 (2004). [CrossRef] [PubMed]
  43. C. C. Neacsu, R. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: Symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B71(20), 201402 (2005). [CrossRef]
  44. S. Takahashi and A. V. Zayats, “Near-field second-harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002). [CrossRef]
  45. F. Dutto, M. Heiss, A. Lovera, O. López-Sánchez, A. Fontcuberta I Morral, and A. Radenovic, “Enhancement of Second Harmonic Signal in Nanofabricated Cones,” Nano Lett.13(12), 6048–6054 (2013). [CrossRef] [PubMed]
  46. J. Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M. R. Wasielewski, and T. W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas,” Nano Lett.12(1), 269–274 (2012). [CrossRef] [PubMed]
  47. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11(12), 5519–5523 (2011). [CrossRef] [PubMed]
  48. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003). [CrossRef]
  49. M. Celebrano, M. Zavelani-Rossi, D. Polli, G. Cerullo, P. Biagioni, M. Finazzi, L. Duò, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Mapping local field enhancements at nanostructured metal surfaces by second-harmonic generation induced in the near field,” J. Microsc.229(2), 233–239 (2008). [CrossRef] [PubMed]
  50. A. Horneber, A.-L. Baudrion, P.-M. Adam, A.-J. Meixner, and D. Zhang, “Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers,” Phys. Chem. Chem. Phys.15(21), 8031–8034 (2013). [CrossRef] [PubMed]
  51. A. Hille, R. Kullock, S. Grafström, and L. M. Eng, “Improving nano-optical simulations through curved elements implemented within the discontinuous Galerkin method computational,” J. Comput. Theor. Nanos.7(8), 1581–1586 (2010). [CrossRef]
  52. R. Kullock, A. Hille, A. Haussmann, S. Grafström, and L. M. Eng, “SHG simulations of plasmonic nanoparticles using curved elements,” Opt. Express19(15), 14426–14436 (2011). [CrossRef] [PubMed]
  53. D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer, L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern, and A. J. Meixner, “Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials,” J. Raman Spectrosc.40(10), 1371–1376 (2009). [CrossRef]
  54. M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express8(7), 458–474 (2001). [CrossRef] [PubMed]
  55. T. Züchner, A. V. Failla, and A. J. Meixner, “Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects,” Angew. Chem. Int. Ed. Engl.50(23), 5274–5293 (2011). [CrossRef] [PubMed]
  56. F. Stade, A. Heeren, M. Fleischer, and D. P. Kern, “Fabrication of metallic nanostructures for investigating plasmon-induced field enhancement,” Microelectron. Eng.84(5-8), 1589–1592 (2007). [CrossRef]
  57. M. Fleischer, F. Stade, A. Heeren, M. Häffner, K. Braun, C. Stanciu, R. Ehlich, J. K. H. Hörber, A. J. Meixner, and D. P. Kern, “Nanocones on transparent substrates for investigations in scanning probe microscopes,” Microelectron. Eng.86(4-6), 1219–1221 (2009). [CrossRef]
  58. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B81(5), 597–600 (2005). [CrossRef]
  59. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008). [CrossRef] [PubMed]
  60. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A253(1274), 358–379 (1959). [CrossRef]
  61. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  62. M. Lieb, “Mikroskopie mit Parabolspiegeloptik”, Ph.D. Thesis, Universität Siegen (2001).
  63. J. S. Hesthaven and T. Warburton, “Nodal Higher-Order Methods on Unstructured Grids,” J. Comput. Phys.181(1), 186–221 (2002). [CrossRef]
  64. J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Phot. Nano. Fund. Appl.7(1), 2–11 (2009). [CrossRef]
  65. A. Vial, A.-S. Grimault, D. Macías, D. Barchesi, and M. Lamy de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005). [CrossRef]
  66. J. E. Sipe, V. C. Y. So, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21(10), 4389–4402 (1980). [CrossRef]
  67. Sopra n&k Database, Sopralab, www.sopra-sa.com , (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited