OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15564–15570

Absorption-free Bragg reflector using Zeeman sublevels in atomic vapor

Zhongjie Chen, Bin Luo, and Hong Guo  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 15564-15570 (2014)
http://dx.doi.org/10.1364/OE.22.015564


View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Absorption-free Bragg reflector has been studied in ions doped in crystals. We propose a new scheme using Zeeman sublevels of atoms to construct an absorption-free Bragg reflector with practical laser power. Its spatial period of refractive index equals half of the wavelength of the incident standing-wave coupling light. The proposal is simulated in a helium atom scheme, and can be extended to alkali earth atoms.

© 2014 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 9, 2014
Revised Manuscript: June 5, 2014
Manuscript Accepted: June 9, 2014
Published: June 18, 2014

Citation
Zhongjie Chen, Bin Luo, and Hong Guo, "Absorption-free Bragg reflector using Zeeman sublevels in atomic vapor," Opt. Express 22, 15564-15570 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-15564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” Quantum Electron.10(4), 413–427 (1974). [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  3. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett.67, 1855–1858 (1991). [CrossRef] [PubMed]
  4. J. P. Dowling and C. M. Bowden, “Near dipole-dipole effects in lasing without inversion: An enhancement of gain and absorptionless index of refraction,” Phys. Rev. Lett.70, 1421–1424 (1993). [CrossRef] [PubMed]
  5. M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T. Ulrich, and S. Y. Zhu, “Resonantly enhanced refractive index without absorption via atomic coherence,” Phys. Rev. A461468–1487 (1992). [CrossRef] [PubMed]
  6. D. D. Yavuz, “Refractive index enhancement in a far-off resonant atomic system,” Phys. Rev. Lett.95, 223601 (2005). [CrossRef] [PubMed]
  7. C. O’Brien, P. M. Anisimov, Y. Rostovtsev, and O. Kocharovskaya, “Coherent control of refractive index in far-detuned Λ systems,” Phys. Rev. A84, 063835 (2011). [CrossRef]
  8. Z. J. Simmons, N. A. Proite, J. Miles, D. E. Sikes, and D. D. Yavuz, “Refractive index enhancement with vanishing absorption in short, high-density vapor cells,” Phys. Rev. A85, 053810 (2012). [CrossRef]
  9. C. O’Brien and O. Kocharovskaya, “Resonant enhancement of refractive index in transition element doped crystals via coherent control of excited state absorption,” J. Mod. Opt.56, 1933–1940 (2009). [CrossRef]
  10. C. O’Brien and O. Kocharovskaya, “Optically controllable photonic structures with zero absorption,” Phys. Rev. Lett.107, 137401 (2011). [CrossRef]
  11. P. Anisimov and O. Kocharovskaya, “Decaying-dressed-state analysis of a coherently driven three-level Λsystem,” J. Mod. Opt.55, 3159–3171 (2008). [CrossRef]
  12. R. Newell, J. Sebby, and T. G. Walker, “Dense atom clouds in a holographic atom trap,” Opt. Lett.28, 1266–1268 (2003). [CrossRef] [PubMed]
  13. J. Sebby-Strabley, R. T. R. Newell, J. O. Day, E. Brekke, and T. G. Walker, “High-density mesoscopic atom clouds in a holographic atom trap,” Phys. Rev. A71, 021401(R) (2005). [CrossRef]
  14. W. L. Wiese and J. R. Fuhra, “Accurate atomic transition probabilities for hydrogen, helium, and lithium,” J. Phys. Chem. Ref. Data38, 565–715 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited