OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15724–15736

Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission

Min-Chi Cheng, Yu-Chieh Chi, Yi-Cheng Li, Cheng-Ting Tsai, and Gong-Ru Lin  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 15724-15736 (2014)
http://dx.doi.org/10.1364/OE.22.015724


View Full Text Article

Enhanced HTML    Acrobat PDF (7258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from −12 to −3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to −104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10−3 to 5 × 10−5, which slightly degrades to 1.1 × 10−4 after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from −12 to −3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from −0.8 to −1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10−5 under a receiving power of −3 dBm.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(140.3520) Lasers and laser optics : Lasers, injection-locked

ToC Category:
Optical Communications

History
Original Manuscript: September 27, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: February 3, 2014
Published: June 20, 2014

Citation
Min-Chi Cheng, Yu-Chieh Chi, Yi-Cheng Li, Cheng-Ting Tsai, and Gong-Ru Lin, "Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission," Opt. Express 22, 15724-15736 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-15724


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett.10(9), 1334–1336 (1998). [CrossRef]
  2. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol.18(2), 125–143 (2000). [CrossRef]
  3. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol.16(9), 1546–1559 (1998). [CrossRef]
  4. G.-R. Lin, T. K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express17(20), 17739–17746 (2009). [CrossRef] [PubMed]
  5. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett.37(19), 1181–1182 (2001). [CrossRef]
  6. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multi-plexing passive optical network,” J. Lightwave Technol.22(11), 2582–2591 (2004). [CrossRef]
  7. Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express15(6), 2953–2962 (2007). [CrossRef] [PubMed]
  8. C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett.20(10), 794–796 (2008). [CrossRef]
  9. S.-Y. Lin, Y.-C. Chi, H.-L. Wang, G.-C. Lin, J.-W. Liaw, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron.19(4), 1501011 (2013). [CrossRef]
  10. M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett.11(9), 1114–1116 (1999). [CrossRef]
  11. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett.13(7), 735–737 (2001). [CrossRef]
  12. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw.4(11), 737–758 (2005). [CrossRef]
  13. E. Wong, K.-L. Lee, and T. Anderson, “Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electron. Lett.42(5), 299–301 (2006). [CrossRef]
  14. S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber Technol.12(2), 162–169 (2006). [CrossRef]
  15. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, and C.-H. Lee, “Dense WDM-PON based on wavelength locked Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett.17(7), 1579–1581 (2005). [CrossRef]
  16. H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express16(7), 4520–4528 (2008). [CrossRef] [PubMed]
  17. C. W. Chow and C. S. Wong, Member, IEEE, andH. K. Tsang, “All-Optical ASK/DPSK Label-Swapping and Buffering Using Fabry–Perot Laser Diodes,” IEEE J. Sel. Top. Quantum Electron.10(2), 363–370 (2004). [CrossRef]
  18. Y. S. Liao, H. C. Kuo, Y. J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express17(6), 4859–4867 (2009). [CrossRef] [PubMed]
  19. G.-R. Lin, T.-K. Cheng, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry-Perot laser diode with injection locking mode number dependent transmission and noise performances,” J. Lightwave Technol.28(9), 1349–1355 (2010). [CrossRef]
  20. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol.28(20), 2925–2932 (2010). [CrossRef]
  21. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.42(10), 587–589 (2006). [CrossRef]
  22. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol.25(1), 131–138 (2007). [CrossRef]
  23. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008). [CrossRef] [PubMed]
  24. N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550-nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fiber using a directly modulated DFB,” in Tech. Digest of the Conference on Optical Fiber Communication, 5 (Optical Society of America, 2005), pp. 319–321.
  25. J. M. Tang and K. Alan Shore, “30-Gb/s Signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation,” J. Lightwave Technol.24(6), 2318–2327 (2006). [CrossRef]
  26. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008). [CrossRef] [PubMed]
  27. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008). [CrossRef]
  28. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett.22(11), 745–747 (2010). [CrossRef]
  29. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012). [CrossRef] [PubMed]
  30. H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” IEEE Photon. Technol. Lett.24(1), 85–87 (2012). [CrossRef]
  31. C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry–Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett.48(15), 940–942 (2012). [CrossRef]
  32. H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection-locked Fabry–Pe’rot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. Journal5(3), 7901208 (2013). [CrossRef]
  33. V. Vujicic, P. M. Anandarajah, C. Browning, and L. P. Barry, “WDM-OFDM-PON based on compatible SSB technique using a mode locked comb source,” IEEE Photon. Technol. Lett.25(21), 2058–2061 (2013). [CrossRef]
  34. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express20(18), 20071–20077 (2012). [CrossRef] [PubMed]
  35. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol.31(1), 28–35 (2013). [CrossRef]
  36. Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express12(19), 4449–4456 (2004). [CrossRef] [PubMed]
  37. K. Kikuchi and T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron.21(11), 1814–1818 (1985). [CrossRef]
  38. A. Murakam, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron.39(3), 438–447 (2003). [CrossRef]
  39. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  40. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1997), Chap. 3.
  41. S. Forestier, P. Bouysse, R. Quere, A. Mallet, J.-M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech.52(4), 1132–1141 (2004). [CrossRef]
  42. R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in 4th International Conference on Electrical and Computer Engineering (ICECE 2006), 408–411 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited