OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15924–15931

Origin of structural relaxation dependent spectroscopic features of bismuth-activated glasses

Qiangbing Guo, Binbin Zheng, Shifeng Zhou, Beibei Xu, Yanqing Qiu, Yongze Yu, and Jianrong Qiu  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 15924-15931 (2014)
http://dx.doi.org/10.1364/OE.22.015924


View Full Text Article

Enhanced HTML    Acrobat PDF (2215 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time, we studied the effect of structural relaxation on the NIR spectroscopic properties of bismuth-activated germanium glasses below glass transition temperature. Interestingly, distinct change behavior of NIR luminescence is observed at two different heat-treatment temperature ranges corresponding to two different relaxation behavior of glass structure. Besides, when structural modified by partly substituting B2O3 for GeO2, a narrower and more thermal sensitive luminescence is observed, which is inexplicable by “inhomogeneous broadening” and we tentatively attribute it to a defect-involved reason. Fundamentally the results here not only provide us a deeper insight into the optical property of bismuth-activated materials but also increase our understanding of the glassy state, and practically it delivers some valuable guidance in designing bismuth-activated glasses with superior NIR optical properties.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties

ToC Category:
Spectroscopy

History
Original Manuscript: April 25, 2014
Revised Manuscript: June 12, 2014
Manuscript Accepted: June 12, 2014
Published: June 20, 2014

Citation
Qiangbing Guo, Binbin Zheng, Shifeng Zhou, Beibei Xu, Yanqing Qiu, Yongze Yu, and Jianrong Qiu, "Origin of structural relaxation dependent spectroscopic features of bismuth-activated glasses," Opt. Express 22, 15924-15931 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-15924


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett.82(19), 3325 (2003). [CrossRef]
  2. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007). [CrossRef]
  3. H. T. Sun, J. Yang, M. Fujii, Y. Sakka, Y. Zhu, T. Asahara, N. Shirahata, M. Ii, Z. Bai, J. G. Li, and H. Gao, “Highly fluorescent silica-coated bismuth-doped aluminosilicate nanoparticles for near-infrared bioimaging,” Small7(2), 199–203 (2011). [CrossRef] [PubMed]
  4. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009). [CrossRef] [PubMed]
  5. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  6. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007). [CrossRef]
  7. E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technol.31(4), 681–688 (2013). [CrossRef]
  8. J. Ruan, E. Wu, H. Zeng, S. Zhou, G. Lakshminarayana, and J. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett.92(10), 101121 (2008). [CrossRef]
  9. A. N. Romanov, Z. T. Fattakhova, D. M. Zhigunov, V. N. Korchak, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (Ӏ). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation,” Opt. Mater.33(4), 631–634 (2011). [CrossRef]
  10. T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-ray absorption fine structure,” J. Am. Ceram. Soc.90(11), 3596–3600 (2007). [CrossRef]
  11. H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett.89(5), 051917 (2006). [CrossRef]
  12. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater.18(9), 1407–1413 (2008). [CrossRef]
  13. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009). [CrossRef] [PubMed]
  14. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  15. S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res.22(6), 1435–1438 (2007). [CrossRef]
  16. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express13(5), 1628–1634 (2005). [CrossRef] [PubMed]
  17. S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009). [CrossRef]
  18. B. Xu, D. Tan, S. Zhou, Z. Hong, K. N. Sharafudeen, and J. Qiu, “Enhanced broadband near-infrared luminescence of Bi-doped oxyfluoride glasses,” Opt. Express20(27), 29105–29111 (2012). [CrossRef] [PubMed]
  19. W. Shen, J. Ren, S. Baccaro, A. Cemmi, and G. Chen, “Broadband infrared luminescence in γ-ray irradiated bismuth borosilicate glasses,” Opt. Lett.38(4), 516–518 (2013). [CrossRef] [PubMed]
  20. B. Xu, P. Chen, S. Zhou, Z. Hong, J. Hao, and J. Qiu, “Enhanced broadband near-infrared luminescence in Bi-doped glasses by co-doping with Ag,” J. Appl. Phys.113(18), 183506 (2013). [CrossRef]
  21. T. M. Hau, X. Yu, D. Zhou, Z. Song, Z. Yang, R. Wang, and J. Qiu, “Super broadband near-infrared emission and energy transfer in Bi-Er co-doped lanthanum aluminosilicate glasses,” Opt. Mater.35(3), 487–490 (2013). [CrossRef]
  22. B. Xu, J. Hao, S. Zhou, and J. Qiu, “Ultra-broadband infrared luminescence of Bi-doped thin-films for integrated optics,” Opt. Express21(15), 18532–18537 (2013). [CrossRef] [PubMed]
  23. B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, and J. Qiu, “Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses,” Opt. Express19(23), 23436–23443 (2011). [CrossRef] [PubMed]
  24. M. M. Smedskjaer, J. C. Mauro, and Y. Yue, “Prediction of glass hardness using temperature-dependent constraint theory,” Phys. Rev. Lett.105(11), 115503 (2010). [CrossRef] [PubMed]
  25. Q. Guo, B. Xu, D. Tan, J. Wang, S. Zheng, W. Jiang, J. Qiu, and S. Zhou, “Regulation of structure rigidity for improvement of the thermal stability of near-infrared luminescence in Bi-doped borate glasses,” Opt. Express21(23), 27835–27840 (2013). [CrossRef] [PubMed]
  26. B. C. Hancock, S. L. Shamblin, and G. Zografi, “Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures,” Pharm. Res.12(6), 799–806 (1995). [CrossRef] [PubMed]
  27. M. D. Ediger, “Spatially heterogeneous dynamics in supercooled liquids,” Annu. Rev. Phys. Chem.51(1), 99–128 (2000). [CrossRef] [PubMed]
  28. B. Xu, S. Zhou, D. Tan, Z. Hong, J. Hao, and J. Qiu, “Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germinate glasses,” J. Appl. Phys.113(8), 083503 (2013). [CrossRef]
  29. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006). [CrossRef]
  30. S. Zhou, H. Dong, H. Zeng, J. Hao, J. Chen, and J. Qiu, “Infrared luminescence and amplification properties of Bi-doped GeO2-Ga2O3-Al2O3 glasses,” J. Appl. Phys.103(10), 103532 (2008). [CrossRef]
  31. G. Adam and J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass forming liquids,” J. Chem. Phys.43(1), 139–146 (1965). [CrossRef]
  32. C. Donati, S. C. Glotzer, and P. H. Poole, “Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition,” Phys. Rev. Lett.82(25), 5064–5067 (1999). [CrossRef]
  33. W. K. Kegel and A. V. Blaaderen, “Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions,” Science287(5451), 290–293 (2000).
  34. C. A. Angell, L. Monnerie, and L. M. Torell, “Strong and fragile behavior in liquid polymers,” Proc. MRS215, 3–9 (1990). [CrossRef]
  35. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science287(5453), 627–631 (2000). [CrossRef] [PubMed]
  36. N. Zhang, K. N. Sharafudeen, G. Dong, M. Peng, and J. Qiu, “Mixed network effect of broadband near-infrared emission in Bi-doped B2O3-GeO2 glasses,” J. Am. Ceram. Soc.95(12), 3842–3846 (2012). [CrossRef]
  37. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn.115(4), 259–263 (2007).
  38. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  39. E. I. Kamitsos and G. D. Chryssikos, “Borate glass structure by Raman and infrared spectroscopies,” J. Mol. Struct.247, 1–16 (1991). [CrossRef]
  40. E. I. Kamitsos, Y. D. Yiannopoulos, M. A. Karakassides, G. D. Chryssikos, and H. Jain, “Raman and infrared structural investigation of xRb2O·(1-x)GeO2 glasses,” J. Phys. Chem.100(28), 11755–11765 (1996). [CrossRef]
  41. A. A. Osipov and L. M. Osipova, “Raman scattering study of barium borate glass and melts,” J. Phys. Chem. Solids74(7), 971–978 (2013). [CrossRef]
  42. J. A. Duffy, “A common optical basicity scale for oxide and fluoride glasses,” J. Non-Cryst. Solids109(1), 35–39 (1989). [CrossRef]
  43. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser application,” Appl. Phys. Lett.92(4), 041908 (2008). [CrossRef]
  44. S. Zhou, W. Lei, J. Chen, J. Hao, H. Zeng, and J. Qiu, “Laser-induced optical property changes inside Bi-doped glass,” IEEE Photon. Technol. Lett.21(6), 386–388 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited