OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 15941–15948

Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell

Yoon-Seok Lee and Han Seb Moon  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 15941-15948 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S1/2 (F = 2)-5P3/2 (F′ = 3) transition of 87Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

© 2014 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5530) Quantum optics : Pulse propagation and temporal solitons

ToC Category:
Coherence and Statistical Optics

Original Manuscript: April 28, 2014
Revised Manuscript: June 16, 2014
Manuscript Accepted: June 16, 2014
Published: June 20, 2014

Yoon-Seok Lee and Han Seb Moon, "Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell," Opt. Express 22, 15941-15948 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77(2), 633–673 (2005). [CrossRef]
  3. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A57(4), 2996–3002 (1998). [CrossRef]
  4. A. M. Akulshin and R. J. McLean, “Fast light in atomic media,” J. Opt.12(10), 104001 (2010). [CrossRef]
  5. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409(6819), 490–493 (2001). [CrossRef] [PubMed]
  6. A. V. Gorshkov, A. André, M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, “Universal Approach to Optimal Photon Storage in Atomic Media,” Phys. Rev. Lett.98(12), 123601 (2007). [CrossRef] [PubMed]
  7. I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett.98(24), 243602 (2007). [CrossRef] [PubMed]
  8. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum Memory for Squeezed Light,” Phys. Rev. Lett.100(9), 093602 (2008). [CrossRef] [PubMed]
  9. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature452(7183), 67–71 (2008). [CrossRef] [PubMed]
  10. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics3(12), 706–714 (2009). [CrossRef]
  11. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys.7(1), 13–16 (2011). [CrossRef]
  12. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473(7346), 190–193 (2011). [CrossRef] [PubMed]
  13. Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett.110(8), 083601 (2013). [CrossRef] [PubMed]
  14. O. Firstenberg, M. Shuker, A. Ron, and N. Davidson, “Colloquium: Coherent diffusion of polaritons in atomic media,” Rev. Mod. Phys.85(3), 941–960 (2013). [CrossRef]
  15. A. M. Akulshin, A. Lezama, A. I. Sidorov, R. J. McLean, and P. Hannaford, “Storage of light in an atomic medium using electromagnetically induced absorption,” J. Phys. At. Mol. Opt. Phys.38(23), L365–L374 (2005). [CrossRef]
  16. A. Lezama, A. M. Akulshin, A. I. Sidorov, and P. Hannaford, “Storage and retrieval of light pulses in atomic media with “slow” and “fast” light,” Phys. Rev. A73(3), 033806 (2006). [CrossRef]
  17. C. Schnurr, K. D. Stokes, G. R. Welch, and J. E. Thomas, “Continuous spatial photon echoes,” Opt. Lett.15(19), 1097–1099 (1990). [CrossRef] [PubMed]
  18. B. Wang, S. Li, H. Wu, H. Chang, H. Wang, and M. Xiao, “Controlled release of stored optical pulses in an atomic ensemble into two separate photonic channels,” Phys. Rev. A72(4), 043801 (2005). [CrossRef]
  19. N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature445(7128), 623–626 (2007). [CrossRef] [PubMed]
  20. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and Time Reversing Light via Atomic Coherence,” Phys. Rev. Lett.88(10), 103601 (2002). [CrossRef] [PubMed]
  21. Y. Xiao, M. Klein, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, and R. L. Walsworth, “Slow Light Beam Splitter,” Phys. Rev. Lett.101(4), 043601 (2008). [CrossRef] [PubMed]
  22. A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal velocity, causality, and quantum noise in superluminal light pulse propagation,” Phys. Rev. Lett.86(18), 3925–3929 (2001). [CrossRef] [PubMed]
  23. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature406(6793), 277–279 (2000). [CrossRef] [PubMed]
  24. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature425(6959), 695–698 (2003). [CrossRef] [PubMed]
  25. U. Vogl, R. T. Glasser, and P. D. Lett, “Advanced detection of information in optical pulses with negative group velocity,” Phys. Rev. A86(3), 031806 (2012). [CrossRef]
  26. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, “Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line,” Phys. Rev. A68(1), 013810 (2003). [CrossRef]
  27. C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A76(3), 033815 (2007). [CrossRef]
  28. H. J. Kim and H. S. Moon, “Electromagnetically induced absorption with sub-kHz spectral width in a paraffin-coated Rb vapor cell,” Opt. Express19(1), 168–174 (2011). [CrossRef] [PubMed]
  29. H. J. Kim and H. S. Moon, “Wall-induced Ramsey effects on electromagnetically induced absorption,” Opt. Express20(9), 9485–9492 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited