OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16048–16060

Multiple interfacing between classical ray-tracing and wave-optical simulation approaches: a study on applicability and accuracy

Claude Leiner, Wolfgang Nemitz, Susanne Schweitzer, Franz P. Wenzl, Paul Hartmann, Ulrich Hohenester, and Christian Sommer  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16048-16060 (2014)
http://dx.doi.org/10.1364/OE.22.016048


View Full Text Article

Enhanced HTML    Acrobat PDF (1664 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study the applicability of an interface procedure for combined ray-tracing and finite difference time domain (FDTD) simulations of optical systems which contain two diffractive gratings is discussed. The simulation of suchlike systems requires multiple FDTD↔RT steps. In order to minimize the error due to the loss of the phase information in an FDTD→RT step, we derive an equation for a maximal coherence correlation function (MCCF) which describes the maximum degree of impact of phase effects between these two different diffraction gratings and which depends on: the spatial distance between the gratings, the degree of spatial coherence of the light source and the diffraction angle of the first grating for the wavelength of light used. This MCCF builds an envelope of the oscillations caused by the distance dependent coupling effects between the two diffractive optical elements. Furthermore, by comparing the far field projections of pure FDTD simulations with the results of an RT→FDTD→RT→FDTD→RT interface procedure simulation we show that this function strongly correlates with the error caused by the interface procedure.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.0230) Optical devices : Optical devices
(350.4600) Other areas of optics : Optical engineering
(080.1753) Geometric optics : Computation methods
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Geometric Optics

History
Original Manuscript: March 31, 2014
Revised Manuscript: June 13, 2014
Manuscript Accepted: June 17, 2014
Published: June 23, 2014

Citation
Claude Leiner, Wolfgang Nemitz, Susanne Schweitzer, Franz P. Wenzl, Paul Hartmann, Ulrich Hohenester, and Christian Sommer, "Multiple interfacing between classical ray-tracing and wave-optical simulation approaches: a study on applicability and accuracy," Opt. Express 22, 16048-16060 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lang and T. D. Milster, “Investigation of optics in the 10 – 200 µm size regime,” Opt. Rev.14(4), 189–193 (2007). [CrossRef]
  2. T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, and U. Lemmer, “White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission,” Opt. Express20(S6), A932–A940 (2012). [CrossRef]
  3. J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett.99(10), 103303 (2011). [CrossRef]
  4. C.-H. Lin, C.-Y. Chen, D.-M. Yeh, and C.-C. Yang, “Light extraction enhancement of a GaN-based light-emitting diode through grating-patterned photoelectrochemical surface etching with phase mask interferometry,” IEEE Photon. Technol. Lett.22(9), 640–642 (2010). [CrossRef]
  5. D. N. Weiss, H.-C. Yuan, B. G. Lee, H. M. Branz, S. T. Meyers, A. Grenville, and D. A. Keszler, “Nanoimprinting for diffractive light trapping in solar cells,” J. Vac. Sci. Technol. B-Microelectron. and Nanom. Struct.28, C6M98 (2010).
  6. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys.106(7), 074901 (2009). [CrossRef]
  7. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010). [CrossRef] [PubMed]
  8. S. Feng, X. Zhang, H. Wang, M. Xin, and Z. Lu, “Fiber coupled waveguide grating structures,” Appl. Phys. Lett.96(13), 133101 (2010). [CrossRef]
  9. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett.32(11), 1495–1497 (2007). [CrossRef] [PubMed]
  10. T. Pustelny, I. Zielonka, P. Karasinski, and J. Jurusik, “Bragg ’ s grating coupler in planar optical sol-gel waveguides,” Opt. Appl. XXXIV, Vol. 4 (2004).
  11. K. Schmitt and C. Hoffmann, High-Refractive-Index Waveguide Platforms for Chemical and Biosensing, Optical Gu, Springer Series on Chemical Sensors and Biosensors (Springer Berlin Heidelberg, 2009), Vol. 7, pp. 21–55.
  12. S. Grego, S. Naskar, A. M. Patel, A. Huffman, C. A. Bower, and B. R. Stoner, “Novel optical-waveguide sensing platform based on input grating coupler,” Proc. SPIE6123, 61230D (2006). [CrossRef]
  13. M. Prasciolu, D. Cojoc, S. Cabrini, L. Businaro, P. Candeloro, M. Tormen, R. Kumar, C. Liberale, V. Degiorgio, A. Gerardino, G. Gigli, D. Pisignano, E. Di Fabrizio, and R. Cingolani, “Design and fabrication of on-fiber diffractive elements for fiber-waveguide coupling by means of e-beam lithography,” Microelectron. Eng.68, 169–174 (2003). [CrossRef]
  14. P. Struk and T. Pustelny, “Design and numerical analyses of the planar grating coupler,” Bull. Polish Acad. Sci. Tech. Sci.58, 509–512 (2010).
  15. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006). [CrossRef]
  16. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express14(24), 11622–11630 (2006). [CrossRef] [PubMed]
  17. S. S. Trieu and X. Jin, “Study of top and bottom photonic gratings on GaN LED with error grating models,” IEEE J. Quantum Electron.46(10), 1456–1463 (2010). [CrossRef]
  18. I. J. Buss, G. R. Nash, J. G. Rarity, and M. J. Cryan, “Finite-difference time-domain modeling of periodic and disordered surface gratings in AlInSb light emitting diodes with metallic back-reflectors,” J. Lightwave Technol.28(8), 1190–1200 (2010). [CrossRef]
  19. Y. Jin, F. Yang, Q. Li, Z. Zhu, J. Zhu, and S. Fan, “Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure,” Opt. Express20(14), 15818–15825 (2012). [CrossRef] [PubMed]
  20. S. S. Trieu, X. Jin, B. Zhang, T. Dai, K. Bao, X.-N. Kang, and G.-Y. Zhang, “Light Extraction Improvement of GaN-based Light Emitting Diodes using Patterned Undoped GaN Bottom Reflection Gratings,” Proc. SPIE7216, 72162Q (2009). [CrossRef]
  21. F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt.58(5-6), 449–466 (2011). [CrossRef]
  22. LightTrans,” http://www.lighttrans.com/ .
  23. A. Rohani, S. K. Chaudhuri, and S. Safavi-Naeini, “Gaussian Beam-Based Hybrid Method for Quasi-Optical Systems,” IEEE Trans. Antenn. Propag.59(12), 4679–4690 (2011). [CrossRef]
  24. Breault Research Organization, ASAP - Getting started guide,” http://www.breault.com/resources/kbasePDF/broman0108_getstart.pdf .
  25. Lumerical Solutions, FDTD Solutions Knowledge Base,” http://docs.lumerical.com/en/fdtd/knowledge_base.html .
  26. A. W. Greynolds, “Vector Formulation Of The Ray-Equivalent Method For General Gaussian Beam Propagation,” Proc. of SPIE 0679 (1986).
  27. Breault Research Organization, Wave Optics in ASAP,” http://www.breault.com/resources/kbasePDF/brotg0919_wave.pdf .
  28. Breault Research Organization, Modeling Incoherent, Extended Sources,” http://www.breault.com/resources/kbasePDF/bropn1153_sources.pdf .
  29. Y. Wang, S. Safavi-Naeini, and S. K. Chaudhuri, “A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation,” IEEE Trans. Antenn. Propag.48(5), 743–754 (2000). [CrossRef]
  30. Y. Wang, S. K. Chaudhuri, and S. Safavi-Naeini, “An FDTD/ray-tracing analysis method for wave penetration through inhomogeneous walls,” IEEE Trans. Antenn. Propag.50(11), 1598–1604 (2002). [CrossRef]
  31. Y. Kawaguchi, K. Nishizono, J.-S. Lee, and H. Katsuda, “Light extraction simulation of surface-textured light-emitting diodes by finite-difference time-domain method and ray-tracing method,” Jpn. J. Appl. Phys.46(1), 31–34 (2007). [CrossRef]
  32. L.-W. Cheng, Y. Sheng, C.-S. Xia, W. Lu, M. Lestrade, and Z.-M. Li, “Simulation for light power distribution of 3D InGaN/GaN MQW LED with textured surface,” Numer Simul Optoelectron Devices 1-2 (2010).
  33. Y. Sheng, C. S. Xia, Z. M. Simon Li, and L. W. Cheng, “Simulation of InGaN/GaN light-emitting diodes with patterned sapphire substrate,” 2012 12th Int. Conf. Numer. Simul. Optoelectron. Devices 23–24 (2012). [CrossRef]
  34. C. Leiner, S. Schweitzer, F. P. Wenzl, P. Hartmann, U. Hohenester, and C. Sommer, “A simulation procedure interfacing ray-tracing and finite-difference time-domain methods for a combined simulation of diffractive and refractive optical elements,” J. Lightwave Technol.32(6), 1054–1062 (2014). [CrossRef]
  35. C. Leiner, S. Schweitzer, V. Schmidt, M. Belegratis, F. P. Wenzel, P. Hartmann, U. Hohenester, and C. Sommer, “Multi-scale simulation of an optical device using a novel approach for combining ray-tracing and FDTD,” Proc. SPIE8781, 87810Z (2013). [CrossRef]
  36. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  37. M. Born and E. Wolf, Principles of Optics (1999), Vol. 1.
  38. A. Taflove and S. C. Hagness, “Computational Electrodynamics,” The Finite-Difference Time-Domain Method2010, 1006 (2005).
  39. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited