OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16061–16078

Numerical focusing methods for full field OCT: a comparison based on a common signal model

Abhishek Kumar, Wolfgang Drexler, and Rainer A. Leitgeb  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 16061-16078 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1579 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper a theoretical model of the full field swept source (FF SS) OCT signal is presented based on the angular spectrum wave propagation approach which accounts for the defocus error with imaging depth. It is shown that using the same theoretical model of the signal, numerical defocus correction methods based on a simple forward model (FM) and inverse scattering (IS), the latter being similar to interferometric synthetic aperture microscopy (ISAM), can be derived. Both FM and IS are compared quantitatively with sub-aperture based digital adaptive optics (DAO). FM has the least numerical complexity, and is the fastest in terms of computational speed among the three. SNR improvement of more than 10 dB is shown for all the three methods over a sample depth of 1.5 mm. For a sample with non-uniform refractive index with depth, FM and IS both improved the depth of focus (DOF) by a factor of 7x for an imaging NA of 0.1. DAO performs the best in case of non-uniform refractive index with respect to DOF improvement by 11x.

© 2014 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3020) Image processing : Image reconstruction-restoration
(110.0180) Imaging systems : Microscopy
(110.4500) Imaging systems : Optical coherence tomography
(110.1085) Imaging systems : Adaptive imaging
(100.3175) Image processing : Interferometric imaging

ToC Category:
Image Processing

Original Manuscript: April 11, 2014
Revised Manuscript: June 12, 2014
Manuscript Accepted: June 13, 2014
Published: June 23, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Abhishek Kumar, Wolfgang Drexler, and Rainer A. Leitgeb, "Numerical focusing methods for full field OCT: a comparison based on a common signal model," Opt. Express 22, 16061-16078 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004). [CrossRef] [PubMed]
  2. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef] [PubMed]
  3. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006). [CrossRef] [PubMed]
  4. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett.33(15), 1696–1698 (2008). [CrossRef] [PubMed]
  5. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19(13), 12141–12155 (2011). [CrossRef] [PubMed]
  6. A. Zlotnik, Y. Abraham, L. Liraz, I. Abdulhalim, and Z. Zalevsky, “Improved extended depth of focus full field spectral domain Optical Coherence Tomography,” Opt. Commun.283(24), 4963–4968 (2010). [CrossRef]
  7. J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express21(8), 10048–10061 (2013). [CrossRef] [PubMed]
  8. K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express3(10), 2353–2370 (2012). [CrossRef] [PubMed]
  9. P. Hariharan, Optical Interferometry (Academic, 2003).
  10. Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006). [CrossRef] [PubMed]
  11. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007). [CrossRef] [PubMed]
  12. Y. Nakamura, J. Sugisaka, Y. Sando, T. Endo, M. Itoh, T. Yatagai, and Y. Yasuno, “Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography,” Jpn. J. Appl. Phys.46(4A), 1774–1778 (2007). [CrossRef]
  13. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007). [CrossRef]
  14. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  15. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express16(4), 2555–2569 (2008). [CrossRef] [PubMed]
  16. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Phase stability technique for inverse scattering in optical coherence tomography,” 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 578–581 (2006). [CrossRef]
  17. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett.34(10), 1576–1578 (2009). [CrossRef] [PubMed]
  18. G. Min, W. J. Choi, J. W. Kim, and B. H. Lee, “Refractive index measurements of multiple layers using numerical refocusing in FF-OCT,” Opt. Express21(24), 29955–29967 (2013). [CrossRef] [PubMed]
  19. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24(4), 1034–1041 (2007). [CrossRef] [PubMed]
  20. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express21(9), 10850–10866 (2013). [CrossRef] [PubMed]
  21. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express20(19), 21247–21263 (2012). [CrossRef] [PubMed]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University, 2007).
  23. W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar (Artech House, 1995), Chap. 6.
  24. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  25. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A.109(19), 7175–7180 (2012). [CrossRef] [PubMed]
  26. A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Opt. Express19(13), 12027–12038 (2011). [CrossRef] [PubMed]
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2004).
  28. A. Ahmad, N. D. Shemonski, S. G. Adie, H. S. Kim, W. M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics7(6), 444–448 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited