OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16232–16240

Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs)

Mohammadreza Ghasemkhani, Alexander R. Albrecht, Seth D. Melgaard, Denis V. Seletskiy, Jeffrey G. Cederberg, and Mansoor Sheik-Bahae  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 16232-16240 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 7% Yb:YLF crystal is laser cooled to 131 ± 1 K from room temperature by placing it inside the external cavity of a high power InGaAs/GaAs VECSEL operating at 1020 nm with 0.15 nm linewidth. This is the lowest temperature achieved in the intracavity geometry to date and presents major progress towards realizing an all-solid-state compact optical cryocooler.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3320) Lasers and laser optics : Laser cooling

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 30, 2014
Revised Manuscript: June 13, 2014
Manuscript Accepted: June 18, 2014
Published: June 24, 2014

Mohammadreza Ghasemkhani, Alexander R. Albrecht, Seth D. Melgaard, Denis V. Seletskiy, Jeffrey G. Cederberg, and Mansoor Sheik-Bahae, "Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs)," Opt. Express 22, 16232-16240 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Pringsheim, “Zwei bemerkungen ueber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys.57(11-12), 739–746 (1929). [CrossRef]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995). [CrossRef]
  3. R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).
  4. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007). [CrossRef]
  5. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys.73(8), 086501 (2010). [CrossRef]
  6. S. D. Melgaard, D. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express22(7), 7756–7764 (2014). [CrossRef] [PubMed]
  7. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration,” J. Appl. Phys.86(11), 6489 (1999). [CrossRef]
  8. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett.38(9), 1588–1590 (2013). [CrossRef] [PubMed]
  9. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced for optical refrigeration,” Appl. Phys. Lett.96(18), 181106 (2010). [CrossRef]
  10. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett.86(15), 154107 (2005). [CrossRef]
  11. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B75(14), 144302 (2007). [CrossRef]
  12. S. D. Melgaard, Cryogenic Optical Refrigeration: Laser Cooling of Solids Below 123 K, PhD Dissertation, University of New Mexico (2013).
  13. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B20(5), 1066 (2003). [CrossRef]
  14. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010). [CrossRef]
  15. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon.4(1), 78–107 (2012). [CrossRef]
  16. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys.91(5), 3356 (2002). [CrossRef]
  17. B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A70(2), 021401 (2004). [CrossRef]
  18. B. Heeg, G. Rumbles, M. D. Stone, A. Khizhnyak, and P. A. Debarber, “Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures,” J. Mod. Opt.53(8), 1109–1120 (2006). [CrossRef]
  19. M. Sheik-Bahae, “All-Solid-State Optical Cryocooler Using Intracavity Optically Pumped Semiconductor Lasers,” Patent Pending.
  20. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997). [CrossRef]
  21. O. G. Okhotnikov, Semiconductor Disk Lasers: Physics and Technology, 1st ed. (Wiley-VCH, 2010).
  22. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012). [CrossRef]
  23. L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
  24. S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev.3(5), 407–434 (2009). [CrossRef]
  25. J. G. Cederberg, A. R. Albrecht, M. Ghasemkhani, S. D. Melgaard, and M. Sheik-Bahae, “Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF,” J. Cryst. Growth393, 28–31 (2014). [CrossRef]
  26. B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE6115, 61151C (2006). [CrossRef]
  27. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993). [CrossRef]
  28. A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct Comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express17(20), 18312–18319 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited