OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16241–16253

High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature

Simon Pevec and Denis Donlagic  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16241-16253 (2014)
http://dx.doi.org/10.1364/OE.22.016241


View Full Text Article

Enhanced HTML    Acrobat PDF (2105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a highly-sensitive, miniature, all-silica, dual parameter fiber-optic Fabry-Perot sensor, which is suitable for independent measurement of the refractive index and the temperature of the fluid surrounding the sensor. The experimental sensor was produced by a micromachining process based on the selective etching of doped silica glass and a simple assembly procedure that included fiber cleaving, splicing and etching of optical fibers. The presented sensor also allows for direct compensation of the temperature’s effect on the fluid’s refractive index change and consequently provides opportunities for the detection of very small changes in the surrounding fluid’s composition. A measurement resolution of 2x10−7RIU was demonstrated experimentally for a component of the refractive index that is related purely to the fluid’s composition. This resolution was achieved under non-stabilized temperature conditions. The temperature resolution of the sensor proved to be about 10−3°C. These high resolution measurements were obtained by phase-tracking of characteristic components in a Fourier transform of sensor’s optical spectrum.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.5710) Instrumentation, measurement, and metrology : Refraction
(120.6780) Instrumentation, measurement, and metrology : Temperature
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Sensors

History
Original Manuscript: April 14, 2014
Revised Manuscript: June 10, 2014
Manuscript Accepted: June 10, 2014
Published: June 24, 2014

Citation
Simon Pevec and Denis Donlagic, "High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature," Opt. Express 22, 16241-16253 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express22(2), 1480–1489 (2014). [CrossRef] [PubMed]
  2. C. Zhong, C. Y. Shen, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, and J. F. Wang, “A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement,” Sensor. Actuat. B- Chem.168, 360–364 (2012).
  3. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008). [CrossRef] [PubMed]
  4. Y. Liu and S. L. Qu, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing,” Appl. Opt.53(3), 469–474 (2014). [CrossRef] [PubMed]
  5. N. Diaz-Herrera, A. Gonzalez-Cano, D. Viegas, J. L. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 mu m region,” Sensor. Actuat. B-Chem.146(1), 195–198 (2010).
  6. Y. Tian, W. H. Wang, N. Wu, X. T. Zou, C. Guthy, and X. W. Wang, “A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel,” Sensors-Basel11(12), 1078–1087 (2011). [CrossRef] [PubMed]
  7. S. Pevec and D. Donlagic, “Nanowire-based refractive index sensor on the tip of an optical fiber,” Appl. Phys. Lett.102(21), 213114 (2013). [CrossRef]
  8. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express20(20), 22813–22818 (2012). [CrossRef] [PubMed]
  9. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  10. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-Resolution and Temperature-Insensitive Fiber Optic Refractive Index Sensor Based on Fresnel Reflection Modulated by Fabry-Perot Interference,” J. Lightwave Technol.28(19), 2799–2803 (2010). [CrossRef]
  11. C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marques, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem.188, 1212–1217 (2013).
  12. H. Q. Yu, L. B. Xiong, Z. H. Chen, Q. G. Li, X. N. Yi, Y. Ding, F. Wang, H. Lv, and Y. M. Ding, “Ultracompact and high sensitive refractive index sensor based on Mach-Zehnder interferometer,” Opt. Lasers Eng.56, 50–53 (2014). [CrossRef]
  13. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007). [CrossRef] [PubMed]
  14. D. Monzon-Hernandez and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensor. Actuat. B-Chem.115, 227–231 (2006).
  15. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett.33(6), 563–565 (2008). [CrossRef] [PubMed]
  16. L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012). [CrossRef] [PubMed]
  17. J. Li, L. P. Sun, S. A. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011). [CrossRef] [PubMed]
  18. C. L. Zhao, L. Qi, S. Q. Zhang, Y. X. Jin, and S. Z. Jin, “Simultaneous measurement of refractive index and temperature based on a partial cone-shaped FBG,” Sensor. Actuat. B-Chem.178, 96–100 (2013).
  19. S. C. Gao, W. G. Zhang, H. Zhang, P. C. Geng, W. Lin, B. Liu, Z. Y. Bai, and X. L. Xue, “Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature,” Sensor. Actuat. B-Chem.188, 931–936 (2013).
  20. D. W. Kim, F. Shen, X. P. Chen, and A. B. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett.30(22), 3000–3002 (2005). [CrossRef] [PubMed]
  21. J. H. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous measurement of refractive index and temperature by using dual long-period gratings with an etching process,” IEEE Sens. J.7(9), 1360–1361 (2007). [CrossRef]
  22. H. C. Xue, H. Y. Meng, W. Wang, R. Xiong, Q. Q. Yao, and B. Huang, “Single-Mode-Multimode Fiber Structure Based Sensor for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Sens. J.13(11), 4220–4223 (2013). [CrossRef]
  23. C. Gouveia, G. Chesini, C. M. B. Cordeiro, J. M. Baptista, and P. A. S. Jorge, “Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror,” Sensor. Actuat. B-Chem.177, 717–723 (2013).
  24. D. J. J. Hu, J. L. Lim, M. Jiang, Y. X. Wang, F. Luan, P. P. Shum, H. F. Wei, and W. J. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett.37(12), 2283–2285 (2012). [CrossRef] [PubMed]
  25. L. C. Li, L. Xia, Z. H. Xie, L. N. Hao, B. B. Shuai, and D. M. Liu, “In-line fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature based on thinned fiber,” Sensor. Actuat. A-Phys.180, 19–24 (2012). [CrossRef]
  26. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010). [CrossRef] [PubMed]
  27. J. Zhang, H. Sun, R. H. Wang, D. Su, T. A. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe,” IEEE Sens. J.13(6), 2061–2065 (2013). [CrossRef]
  28. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009). [CrossRef]
  29. H. H. Liu, F. F. Pang, H. R. Guo, W. X. Cao, Y. Q. Liu, N. Chen, Z. Y. Chen, and T. Y. Wang, “In-series double cladding fibers for simultaneous refractive index and temperature measurement,” Opt. Express18(12), 13072–13082 (2010). [CrossRef] [PubMed]
  30. P. Lu, J. Harris, Y. P. Xu, Y. G. Lu, L. Chen, and X. Y. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett.37(22), 4567–4569 (2012). [CrossRef] [PubMed]
  31. A. C. L. Wong, W. H. Chung, H. Y. Tam, and C. Lu, “Single tilted Bragg reflector fiber laser for simultaneous sensing of refractive index and temperature,” Opt. Express19(2), 409–414 (2011). [CrossRef] [PubMed]
  32. S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt.51(19), 4536–4541 (2012). [CrossRef] [PubMed]
  33. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148(1), 33–38 (2008). [CrossRef]
  34. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photonics J.3(4), 627–632 (2011). [CrossRef]
  35. E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express18(11), 12017–12026 (2010). [CrossRef] [PubMed]
  36. F. Macdonald and D. R. Lide, “CRC handbook of chemistry and physics: From paper to web,” Abstr Pap. Am. Chem. S. 225, U552–U552 (2003).
  37. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt.46(18), 3811–3820 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited