OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16254–16266

Interferometric measurement of far infrared plasmons via resonant homodyne mixing

Gregory C. Dyer, Gregory R. Aizin, S. James Allen, Albert D. Grine, Don Bethke, John L. Reno, and Eric A. Shaner  »View Author Affiliations


Optics Express, Vol. 22, Issue 13, pp. 16254-16266 (2014)
http://dx.doi.org/10.1364/OE.22.016254


View Full Text Article

Enhanced HTML    Acrobat PDF (2180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an electrically tunable terahertz two dimensional plasmonic interferometer with an integrated detection element that down converts the terahertz fields to a DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field functioning as the local oscillator. Plasmonic interferometers with two independently tuned paths are studied. These devices demonstrate a means for developing a spectrometer-on-a-chip where the tuning of electrical length plays a role analogous to that of physical path length in macroscopic spectroscopic tools such as Fourier transform interferometers.

© 2014 Optical Society of America

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(230.5298) Optical devices : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 17, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: June 1, 2014
Published: June 24, 2014

Citation
Gregory C. Dyer, Gregory R. Aizin, S. James Allen, Albert D. Grine, Don Bethke, John L. Reno, and Eric A. Shaner, "Interferometric measurement of far infrared plasmons via resonant homodyne mixing," Opt. Express 22, 16254-16266 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-13-16254


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. Allen, D. C. Tsui, and R. A. Logan, “Observation of the two-dimensional plasmon in silicon inversion layers,” Phys. Rev. Lett.38(17), 980–983 (1977). [CrossRef]
  2. S. J. Allen, H. L. Stormer, and J. C. M. Hwang, “Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures,” Phys. Rev. B28(8), 4875–4877 (1983). [CrossRef]
  3. M. I. Dyakonov and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current,” Phys. Rev. Lett.71(15), 2465–2468 (1993). [CrossRef] [PubMed]
  4. M. I. Dyakonov and M. S. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid,” IEEE Trans. Electron. Dev.43(3), 380–387 (1996). [CrossRef]
  5. P. J. Burke, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, “High frequency conductivity of the high-mobility two-dimensional electron gas,” Appl. Phys. Lett.76(6), 745–747 (2000). [CrossRef]
  6. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011). [CrossRef] [PubMed]
  7. W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012). [CrossRef] [PubMed]
  8. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7(5), 330–334 (2012). [CrossRef] [PubMed]
  9. M. J. W. Rodwell, M. Urteaga, T. Mathew, D. Scott, D. Mensa, Q. Lee, J. Guthrie, Y. Betser, S. C. Martin, R. P. Smith, S. Jaganathan, S. Krishnan, S. I. Long, R. Pullela, B. Agarwal, U. Bhattacharya, L. Samoska, and M. Dahlstrom, “Submicron scaling of HBTs,” IEEE Trans. Electron. Dev.48(11), 2606–2624 (2001). [CrossRef]
  10. D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet, W. Knap, T. Nishimura, T. Otsuji, Y. M. Meziani, G. M. Tsymbalov, and V. V. Popov, “Room temperature detection of sub-terahertz radiation in double-grating-gate transistors,” Opt. Express18(6), 6024–6032 (2010). [CrossRef] [PubMed]
  11. S. Preu, S. Kim, R. Verma, P. G. Burke, N. Q. Vinh, M. S. Sherwin, and A. C. Gossard, “Terahertz detection by a homodyne field effect transistor multiplicative mixer,” IEEE Trans. Terahertz Sci. Technol.2(3), 278–283 (2012). [CrossRef]
  12. M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett.12(1), 96–101 (2012). [CrossRef] [PubMed]
  13. A. D. Gaspare, R. Casini, V. Foglietti, V. Giliberti, E. Giovine, and M. Ortolani, “Terahertz current oscillations in a gated two-dimensional electron gas with antenna integrated at the channel ends,” Appl. Phys. Lett.100(20), 203504 (2012). [CrossRef]
  14. A. Pitanti, D. Coquillat, D. Ercolani, L. Sorba, F. Teppe, W. Knap, G. De Simoni, F. Beltram, A. Tredicucci, and M. S. Vitiello, “Terahetz detection by heterostructed InAs/InSb nanowire based field effect transistors,” Appl. Phys. Lett.101(14), 141103 (2012). [CrossRef]
  15. A. Lisauskas, U. R. Pfeiffer, E. Öjefors, P. H. Bolìvar, D. Glaab, and H. G. Roskos, “Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors,” J. Appl. Phys.105(11), 114511 (2009). [CrossRef]
  16. S. Boppel, A. Lisauskas, V. Krozer, and H. G. Roskos, “Performance and performance variations of sub-1 THz detectors fabricated with 0.15 micron CMOS foundry process,” Electron. Lett.47(11), 661–662 (2011). [CrossRef]
  17. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater.11(10), 865–871 (2012). [CrossRef] [PubMed]
  18. X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors,” Appl. Phys. Lett.81(9), 1627–1629 (2002). [CrossRef]
  19. E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, “Single-quantum-well grating-gated terahertz plasmon detectors,” Appl. Phys. Lett.87(19), 193507 (2005). [CrossRef]
  20. W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett.81(24), 4637–4639 (2002). [CrossRef]
  21. V. M. Muravev and I. V. Kukushkin, “Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect,” Appl. Phys. Lett.100(8), 082102 (2012). [CrossRef]
  22. K. Y. M. Yeung, H. Yoon, W. Andress, K. West, L. Pfeiffer, and D. Ham, “Two-path solid-state interferometry using ultra-subwavelength two-dimensional plasmonic waves,” Appl. Phys. Lett.102(2), 021104 (2013). [CrossRef]
  23. S. Rosenblatt, H. Lin, V. Sazonova, S. Tiwari, and P. L. McEuen, “Mixing at 50 GHz using a single-walled carbon nanotube transistor,” Appl. Phys. Lett.87(15), 153111 (2005). [CrossRef]
  24. G. C. Dyer, N. Q. Vinh, S. J. Allen, G. R. Aizin, J. Mikalopas, J. L. Reno, and E. A. Shaner, “A terahertz plasmon cavity detector,” Appl. Phys. Lett.97(19), 193507 (2010). [CrossRef]
  25. G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012). [CrossRef]
  26. G. C. Dyer, G. R. Aizin, S. Preu, N. Q. Vinh, S. J. Allen, J. L. Reno, and E. A. Shaner, “Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional Plasmonic Cavities,” Phys. Rev. Lett.109(12), 126803 (2012). [CrossRef] [PubMed]
  27. G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics7(11), 925–930 (2013). [CrossRef]
  28. J. W. Song, N. A. Kabir, Y. Kawano, K. Ishibashi, G. R. Aizin, L. Mourokh, J. L. Reno, A. G. Markelz, and J. P. Bird, “Terahertz response of quantum point contacts,” Appl. Phys. Lett.92(22), 223115 (2008). [CrossRef]
  29. W. Knap, M. I. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. Fatimy, Y. M. Meziani, and T. Otsuji, “Field effect transistors for terahertz detection: Physics and first imaging applications,” J. Infrared, Milli., and Terahertz Waves30, 1319–1337 (2009).
  30. S. Preu, S. Kim, R. Verma, P. G. Burke, M. S. Sherwin, and A. C. Gossard, “An improved model for non-resonant terahertz detection in field-effect transistors,” J. Appl. Phys.111(2), 024502 (2012). [CrossRef]
  31. A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108(12), 127401 (2012). [CrossRef] [PubMed]
  32. A. R. Davoyan and V. V. Popov, “Nanometer near-field localization and enhancement in a split two-dimensional plasmonic system at terahertz frequencies,” Opt. Commun.315, 352–355 (2014). [CrossRef]
  33. G. C. Dyer, G. R. Aizin, A. D. Grine, J. L. Reno, J. M. Hensley, S. J. Allen, and E. A. Shaner, “Resonant bolometric subterahertz detection in a 2D plasmonic cavity,” in Proc. of SPIE, Vol. 8363, A. F. M. Anwar, K. D. Nibir, and W. C. Thomas, eds. (SPIE, 2012), pp. 83630T. [CrossRef]
  34. M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, “Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects,” J. Appl. Phys.110(5), 54512–54516 (2011). [CrossRef]
  35. F. Teppe, W. Knap, D. B. Veksler, M. Shur, A. P. Dmitriev, V. Y. Kachorovskii, and S. Rumyantsev, “Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor,” Appl. Phys. Lett.87(5), 052107 (2005). [CrossRef]
  36. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors,” Appl. Phys. Lett.89(13), 131926 (2006). [CrossRef]
  37. A. Shchepetov, C. Gardès, Y. Roelens, A. Cappy, S. Bollaert, S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, D. Seliuta, R. Vadoklis, and G. Valušis, “Oblique modes effect on terahertz plasma wave resonant detection in InGaAs/InAlAs multichannel transistors,” Appl. Phys. Lett.92(24), 242105 (2008). [CrossRef]
  38. V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett.98(15), 153504 (2011). [CrossRef]
  39. P. Földesy, “Current steering detection scheme of three terminal antenna-coupled terahertz field effect transistor detectors,” Opt. Lett.38(15), 2804–2806 (2013). [CrossRef] [PubMed]
  40. P. Földesy, “Terahertz responsivity of field-effect transistors under arbitrary biasing conditions,” J. Appl. Phys.114(11), 114501 (2013). [CrossRef]
  41. V. V. Popov, D. V. Fateev, T. Otsuji, Y. M. Meziani, D. Coquillat, and W. Knap, “Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell,” Appl. Phys. Lett.99(24), 243504 (2011). [CrossRef]
  42. T. Watanabe, S. B. Tombet, Y. Tanimoto, Y. Wang, H. Minamide, H. Ito, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. Meziani, and T. Otsuji, “Ultrahigh sensitive plasmonic terahertz detector based on an asymmetric dual-grating gate HEMT structure,” Solid-State Electron.78, 109–114 (2012). [CrossRef]
  43. G. R. Aizin and G. C. Dyer, “Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: Finite plasmonic crystals and Tamm states,” Phys. Rev. B86(23), 235316 (2012). [CrossRef]
  44. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface,” Nano Lett.11(11), 4701–4705 (2011). [CrossRef] [PubMed]
  45. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics7(5), 394–399 (2013). [CrossRef]
  46. Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett.14(3), 1573–1577 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited