OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 13 — Jun. 30, 2014
  • pp: 16282–16288

Jitter reduction using native fiducials in rotating mirror ultra-fast microphotography

B. H. T. Goh, B. C. Khoo, W. H. I. Mclean, and P. A. Campbell  »View Author Affiliations

Optics Express, Vol. 22, Issue 13, pp. 16282-16288 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rotating mirror cameras represent a workhorse technology for high speed imaging in the MHz framing regime. The technique requires that the target image be swept across a series of juxtaposed CCD sensors, via reflection from a rapidly rotating mirror. Employing multiple sensors in this fashion can lead to spatial jitter in the resultant video file, due to component misalignments along the individual optical paths to each CCD. Here, we highlight that static and dynamic fiducials can be exploited as an effective software-borne countermeasure to jitter, suppressing the standard deviation of the corrected file relative to the raw data by up to 88.5% maximally, and 66.5% on average over the available range of framing rates. Direct comparison with industry-standard algorithms demonstrated that our fiducial-based strategy is as effective at jitter reduction, but typically also leads to an aesthetically superior final form in the post-processed video files.

© 2014 Optical Society of America

OCIS Codes
(170.7160) Medical optics and biotechnology : Ultrafast technology
(320.3980) Ultrafast optics : Microsecond phenomena

ToC Category:
Imaging Systems

Original Manuscript: July 15, 2013
Revised Manuscript: September 30, 2013
Manuscript Accepted: October 13, 2013
Published: June 24, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

B. H. T. Goh, B. C. Khoo, W. H. I. Mclean, and P. A. Campbell, "Jitter reduction using native fiducials in rotating mirror ultra-fast microphotography," Opt. Express 22, 16282-16288 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Campbell and M. R. Prausnitz, “Future directions for therapeutic ultrasound,” Ultrasound Med. Biol.33(4), 657 (2007). [CrossRef] [PubMed]
  2. P. A. Prentice, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005). [CrossRef]
  3. S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech.40(1), 257–285 (2008). [CrossRef]
  4. P. A. Prentice, “Membrane disruption by optically controlled cavitation,” Ph.D. Thesis (University of Dundee, 2006).
  5. H. O. Rolfnes, “Sonoptics: Applications of light and sound in the context of biomedicine,” Ph.D. Thesis, (University of Dundee, 2012).
  6. V. Garbin, B. Dollet, M. Overvelde, D. Cojoc, E. Di Fabrizio, L. van Wijngaarden, A. Prosperetti, N. de Jong, D. Lohse, and M. Versluis, “History force on coated microbubbles propelled by ultrasound,” Phys. Fluids21(9), 092003 (2009). [CrossRef]
  7. C. T. Chin, C. Lancée, J. Borsboom, F. Mastik, M. E. Frijlink, N. de Jong, M. Versluis, and D. Lohse, “Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames,” Rev. Sci. Instrum.74(12), 5026 (2003). [CrossRef]
  8. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  9. S. Erturk, “Digital image stabilization with sub-image phase correlation based global motion estimation,” IEEE Trans. Consum. Electron.49(4), 1320–1325 (2003). [CrossRef]
  10. A. Litvin, J. Konrad, and W. Karl, “Probabilistic video stabilization using kalman filtering and mosaicking,” Proc. Image Video Commun. IS&T/SPIE Symp. Electron. Imaging, Santa Clara, CA., 663–74 (2003). [CrossRef]
  11. E. A. Igel and M. Kristiansen, Rotating Mirror Streak and Framing Cameras. (SPIE Press, 1997).
  12. A. Dubovik, The Photographic Recording of High Speed Processes (Wiley Interscience, 1981).
  13. M. Conneely, H. O. Rolfsnes, C. Main, D. McGloin, and P. A. Campbell, “On the accuracy of framing-rate measurements in ultra-high speed rotating mirror cameras,” Opt. Express19(17), 16432–16437 (2011). [CrossRef] [PubMed]
  14. M. Conneely, H. O. Rolfsnes, D. McGloin, C. Main, and P. A. Campbell, “Role of mirror dynamics in determining the accuracy of framing rate in an ultra high speed rotating mirror camera,” Proc. SPIE8125, 812512 (2011). [CrossRef]
  15. Cordin 550 User’s Manual (Cordin Company, Inc, 2004).
  16. H. M. Graham and G. A. Leavitt, “Air spark fiducial for ultra-high speed photography,” Rev. Sci. Instrum.44(11), 1630–1632 (1973). [CrossRef]
  17. T. Huen, “Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras,” Proc. SPIE832, 63–71 (1988). [CrossRef]
  18. L. L. Shaw, S. A. Muelder, and A. T. Rivera, “Slit-mounted LED fiducial system for rotating mirror streak cameras,” Proc. SPIE1539, 230–236 (1992). [CrossRef]
  19. S. Ray, High Speed Photography and Photonics (SPIE, 1997).
  20. E. Meijering, O. Dzyubachyk, and I. Smal, “Methods for cell and particle tracking,” Methods Enzymol.504, 183–200 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (187 KB)     
» Media 2: MP4 (3557 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited